Trescal

KALIBRIER- UND MESSMÖGLICHKEITEN

DIESES DOKUMENT ENTHÄLT:

- > AKKREDITIERUNGSURKUNDE + ANLAGE D-K-15015-01-00
- > TEIL-AKKREDITIERUNGSURKUNDE + ANLAGE D-K-15015-01-01
- > TEIL-AKKREDITIERUNGSURKUNDE + ANLAGE D-K-15015-01-02

ANHANG FLEXIBLE AKKREDITIERUNG

Akkreditierung

Die Deutsche Akkreditierungsstelle bestätigt mit dieser **Akkreditierungsurkunde**, dass das Kalibrierlaboratorium

Trescal GmbH Borsigstraße 11, 64291 Darmstadt

die Anforderungen gemäß DIN EN ISO/IEC 17025:2018 für die in den nachfolgend aufgeführten Teil-Akkreditierungsurkunden näher spezifizierten Konformitätsbewertungstätigkeiten erfüllt. Dies schließt zusätzlich bestehende gesetzliche und normative Anforderungen an das Kalibrierlaboratorium ein, einschließlich solcher in relevanten sektoralen Programmen, sofern diese in den Anlagen der nachfolgend aufgeführten Teil-Akkreditierungsurkunden ausdrücklich bestätigt werden.

D-K-15015-01-01 D-K-15015-01-02

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Akkreditierung wurde gemäß Art. 5 Abs. 1 Satz 2 VO (EG) 765/2008, nach Durchführung eines Akkreditierungsverfahrens unter Beachtung der Mindestanforderungen der DIN EN ISO/IEC 17011 und auf Grundlage einer Bewertung und Entscheidung der eingesetzten Akkreditierungsausschüsse ausgestellt.

Diese Akkreditierungsurkunde besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der dazugehörigen Anlage. Sie gilt nur in Verbindung mit den oben aufgeführten Teil-Akkreditierungsurkunden und den dort in Bezug genommenen Bescheiden.

Registrierungsnummer der Akkreditierungsurkunde: D-K-15015-01-00

Berlin, 15.06.2023

Im Auftrag Dipl.-Ing. Gabriel Zrenner Abteilungsleitung

Diese Urkunde gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de).

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die Deutsche Akkreditierungsstelle GmbH (DAkkS) ist die beliehene nationale Akkreditierungsstelle der Bundesrepublik Deutschland gemäß § 8 Absatz 1 AkkStelleG i. V. m. § 1 Absatz 1 AkkStelleGBV. Die DAkkS ist als nationale Akkreditierungsbehörde gemäß Art. 4 Abs. 4 VO (EG) 765/2008 und Tz. 4.7 DIN EN ISO/IEC 17000 durch Deutschland benannt.

Die Akkreditierungsurkunde ist gemäß Art. 11 Abs. 2 VO (EG) 765/2008 im Geltungsbereich dieser Verordnung von den nationalen Behörden als gleichwertig anzuerkennen sowie von den WTO-Mitgliedsstaaten, die sich in bilateralen- oder multilateralen Gegenseitigkeitsabkommen verpflichtet haben, die Urkunden von Akkreditierungsstellen, die Mitglied bei ILAC oder IAF sind, als gleichwertig anzuerkennen.

Die DAkkS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC).

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle

Anlage zur Akkreditierungsurkunde D-K-15015-01-00 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 15.06.2023

Ausstellungsdatum: 15.06.2023

Inhaber der Akkreditierungsurkunde:

Trescal GmbH Borsigstraße 11, 64291 Darmstadt

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese in den Anlagen der nachfolgend aufgeführten Teil-Akkreditierungsurkunden ausdrücklich bestätigt werden.

D-K-15015-01-01 D-K-15015-01-02

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Akkreditierungsurkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Akkreditierung

Die Deutsche Akkreditierungsstelle bestätigt mit dieser **Teil-Akkreditierungsurkunde**, dass das Kalibrierlaboratorium

Trescal GmbH Borsigstraße 11, 64291 Darmstadt

die Anforderungen gemäß DIN EN ISO/IEC 17025:2018 für die in der Anlage zu dieser Urkunde aufgeführten Konformitätsbewertungstätigkeiten erfüllt. Dies schließt zusätzliche bestehende gesetzliche und normative Anforderungen an das Kalibrierlaboratorium ein, einschließlich solcher in relevanten sektoralen Programmen, sofern diese in der Anlage zu dieser Urkunde ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Akkreditierung wurde gemäß Art. 5 Abs. 1 Satz 2 VO (EG) 765/2008, nach Durchführung eines Akkreditierungsverfahrens unter Beachtung der Mindestanforderungen der DIN EN ISO/IEC 17011 und auf Grundlage einer Bewertung und Entscheidung durch den eingesetzten Akkreditierungsausschuss ausgestellt.

Diese Teil-Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 10.01.2024 mit der Akkreditierungsnummer D-K-15015-01.

Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 70 Seiten.

Registrierungsnummer der Teil-Akkreditierungsurkunde: **D-K-15015-01-01** Sie ist Bestandteil der Akkreditierungsurkunde D-K-15015-01-00.

Berlin, 10.01.2024

Im Auftrag Dr. Florian Witt Fachbereichsleitung

Diese Urkunde gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de).

Deutsche Akkreditierungsstelle

Standort Berlin Spittelmarkt 10 10117 Berlin Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die Deutsche Akkreditierungsstelle GmbH (DAkkS) ist die beliehene nationale Akkreditierungsstelle der Bundesrepublik Deutschland gemäß § 8 Absatz 1 AkkStelleG i. V. m. § 1 Absatz 1 AkkStelleGBV. Die DAkkS ist als nationale Akkreditierungsbehörde gemäß Art. 4 Abs. 4 VO (EG) 765/2008 und Tz. 4.7 DIN EN ISO/IEC 17000 durch Deutschland benannt.

Die Akkreditierungsurkunde ist gemäß Art. 11 Abs. 2 VO (EG) 765/2008 im Geltungsbereich dieser Verordnung von den nationalen Behörden als gleichwertig anzuerkennen sowie von den WTO-Mitgliedsstaaten, die sich in bilateralen- oder multilateralen Gegenseitigkeitsabkommen verpflichtet haben, die Urkunden von Akkreditierungsstellen, die Mitglied bei ILAC oder IAF sind, als gleichwertig anzuerkennen.

Die DAkkS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC).

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:

EA:

www.european-accreditation.org

ILAC:

www.ilac.org

IAF:

www.iaf.nu

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-K-15015-01-01 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 10.01.2024 Ausstellungsdatum: 10.01.2024

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-K-15015-01-00.

Inhaber der Teil-Akkreditierungsurkunde:

Trescal GmbH
Borsigstraße 11, 64291 Darmstadt

mit den Standorten

Trescal GmbH
Borsigstraße 11, 64291 Darmstadt

Trescal GmbH
Niederlassung Neustadt
Ernst-Abbe-Straße 18, 01844 Neustadt

Trescal GmbH
Niederlassung Esslingen
Limburgstraße 6, 73734 Esslingen

Trescal GmbH Niederlassung Parchim Ludwigsluster Chaussee 5, 19370 Parchim

Trescal GmbH
Niederlassung Mahlow
Ibsenstraße 71, 15831 Mahlow

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite Seite 1 von 70

Trescal GmbH
Niederlassung Donauwörth
Dr.-Ludwig-Bölkow-Straße 1, 86609 Donauwörth

Trescal GmbH Niederlassung Halver Oststraße 7, 58553 Halver

Trescal GmbH
Niederlassung Braunschweig
Weinbergweg 36, 38106 Braunschweig

Trescal GmbH
Niederlassung Leipzig
BMW-Werk Leipzig, BMW-Allee 1, 04349 Leipzig

Trescal GmbH Niederlassung Wetzlar Friedenstraße 26, 35578 Wetzlar

Trescal GmbH Niederlassung Ruhla Bahnhofstraße 25, 99842 Ruhla

Trescal GmbH Niederlassung Nürnberg Poststraße 15a, 90471 Nürnberg

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese nachfolgend ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Kalibrierungen in den Bereichen:

Dimensionelle Messgrößen

Länge

- Längenmessgeräte b)
- Längenmessmittel a) c)
- Parallelendmaße
- Durchmesser c)
- Gewinde
- Formabweichung
- Geradheit b)
- Ebenheit b)
- Rauheit
- Tastschnittgeräte ^{a)}

Koordinatenmesstechnik

Koordinatenmessgeräte b)

Elektrische Messgrößen

Gleichstrom und Niederfrequenz

- Gleichspannung a)
- Wechselspannung a)
- Gleichstromstärke ^{a)}
- Wechselstromstärke ^{a)}
- Gleichstromwiderstand ^{a)}
- Kapazität ^{a)}
- Induktivität
- Elektrische Leistung ^{a)}
- Leistungsfaktor ^{a)}
- Spannungsverhältnis ^{a)}

Zeit und Frequenz

- Frequenz a)
- Zeitintervall ^{a)}

Hochfrequenz- und Strahlungsmessgrößen

Hochfrequenzmessgrößen

- HF-Spannung
- Oszilloskopmessgrößen ^{a)}
- Anstiegszeit a)
- Bandbreite ^{a)}

Für die mit * gekennzeichneten Messgrößen/Kalibriergegenstände ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierrichtlinien im flexiblen Akkreditierungsbereich.

a) auch als Vor-Ort-Kalibrierung

b) nur als Vor-Ort-Kalibrierung

c) auch im mobilen Labor

Darmstadt

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichstrom und Niederfrequenz				
Gleichspannung	0 V		0,5 μV	Kurzschlussadapter
Messgeräte	0,1 V 1 V 10 V; 100 V; 1000 V		$egin{array}{ll} {f 13 \cdot 10^{-6} \cdot U} \ {f 1,7 \cdot 10^{-6} \cdot U} \ {f 2,5 \cdot 10^{-6} \cdot U} \end{array}$	U = Messwert Kalibrieren mit Fluke 732A und 752A
	0 mV bis 0,22 V >0,22 V bis 2,2 V >2,2 V bis 11 V >11 V bis 22 V >22 V bis 220 V >220 V bis 1100 V		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit Kalibrator Fluke 5700A
	0 mV bis 0,2 V >0,2 V bis 2 V >2 V bis 20 V >20 V bis 200 V >200 V bis 1000 V		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit Substitutionsverfahren mit DMM Fluke 8508A
Gleichspannung Quellen	0,1 V 1 V 10 V; 100 V; 1000 V		$egin{array}{cccc} {f 16 \cdot 10^{ ext{-}6} \cdot U} \ {f 1,9 \cdot 10^{ ext{-}6} \cdot U} \ {f 2,5 \cdot 10^{ ext{-}6} \cdot U} \end{array}$	Kalibrieren mit Fluke 732A und 752A
	0 mV bis 0,12 V >0,12 V bis 1,2 V >1,2 V bis 12 V >12 V bis 100 V >100 V bis 200 V >200 V bis 500 V >500 V bis 700 V >700 V bis 1000 V		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit DMM HP 3458A
Gleichspannung Quellen	0 mV bis 0,2 V >0,2 V bis 2 V > 2 V bis 20 V > 20 V bis 200 V > 200 V bis 1000 V		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit DMM Fluke 8508A
	1 kV bis 6 kV		$1\cdot 10^{-3}\cdot U$	Kalibrieren mit Multimeter und Hochspannungsteiler

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichspannung Quellen	0 V 50 mV 100 mV 500 mV 1 V 1,9 V 4 V 5 V 6 V 8 V 10 V 12 V 15 V 19 V 50 V 100 V 500 V		1,5 µV 2 µV 2 µV 2,5 µV 3 µV 15 µV 20 µV 20 µV 25 µV 35 µV 40 µV 45 µV 0,2 mV 0,32 mV 2,2 mV 3,3 mV	Kalibrieren mit DMM Fluke 8508A
Gleichstromstärke Messgeräte	1 μA bis 0,12 mA > 0,12 mA bis 1,2 mA > 1,2 mA bis 12 mA > 1,2 mA bis 0,12 A > 1,2 mA bis 0,12 A > 0,12 A bis 1,05 A > 1,05 A bis 11 A > 11 A bis 20 A 100 nA bis 200 μA > 200 μA bis 2 mA > 20 mA bis 200 mA > 20 mA bis 200 mA > 20 mA bis 200 mA > 20 A		$20 \cdot 10^{-6} \cdot I + 2 \text{ nA}$ $20 \cdot 10^{-6} \cdot I + 15 \text{ nA}$ $20 \cdot 10^{-6} \cdot I + 0,15 \mu\text{A}$ $40 \cdot 10^{-6} \cdot I + 1,5 \mu\text{A}$ $0,12 \cdot 10^{-3} \cdot I + 15 \mu\text{A}$ $30 \cdot 10^{-6} \cdot I + 0,4 m\text{A}$ $35 \cdot 10^{-6} \cdot I + 0,22 m\text{A}$ $11 \cdot 10^{-6} \cdot I + 1 n\text{A}$ $11 \cdot 10^{-6} \cdot I + 1 n\text{A}$ $12 \cdot 10^{-6} \cdot I + 0,1 \mu\text{A}$ $40 \cdot 10^{-6} \cdot I + 1 \mu\text{A}$ $0,15 \cdot 10^{-3} \cdot I + 20 \mu\text{A}$ $0,35 \cdot 10^{-3} \cdot I + 0,5 m\text{A}$	I = Messwert Substitutionsverfahren mit DMM HP 3458A und Shunt Fluke Y5020 Substitutionsverfahren mit DMM HP 8508A
	> 20 A bis 50 A		0,5 · 10 ⁻³ · <i>I</i> + 5 mA	Substitutionsverfahren mit DMM HP 3458A / H&B 0,01 Ω
Gleichstromstärke Messgeräte mit Wandlerverfahren	> 10 A bis 16,5 A > 16,5 A bis 150 A > 150 A bis 1025 A		$6 \cdot 10^{-3} \cdot I + 0,1 \text{ A}$ $6 \cdot 10^{-3} \cdot I + 0,2 \text{ A}$ $6 \cdot 10^{-3} \cdot I + 0,5 \text{ A}$	Kalibrierung mit Fluke 5500A / Coil
Gleichstromstärke Quellen	1μA bis 0,12 mA >0,12 mA bis 1,2 mA >1,2 mA bis 12 mA >12 mA bis 0,12 A >0,12 A bis 1,05 A		$20 \cdot 10^{-6} \cdot I + 2 \text{ nA}$ $20 \cdot 10^{-6} \cdot I + 8 \text{ nA}$ $20 \cdot 10^{-6} \cdot I + 80 \text{ nA}$ $40 \cdot 10^{-6} \cdot I + 0,7 \mu\text{A}$ $0,12 \cdot 10^{-3} \cdot I + 15 \mu\text{A}$	Kalibrieren mit DMM HP 3458A
	> 1,05 A bis 11 A > 11 A bis 20 A		30 · 10 ⁻⁶ · <i>I</i> + 0,4 mA 35 · 10 ⁻⁶ · <i>I</i> + 0,22 mA	Kalibrieren mit DMM HP 3458A u. Shunt Fluke Y 5020
	> 20 A bis 50 A		0,5 · 10 ⁻³ · <i>I</i> + 5 mA	Kalibrierung mit DMM HP 3458A und H&B 0,01 Ω

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Messbere	,	Messbeding		Erweiter		Bemerkungen
Kalibriergegenstand	Messspa	inne	Verfah	ren	Messunsicherheit		
Gleichstromstärke	100 nA bis	200 μΑ			10 · 10 ⁻⁶ · <i>I</i> +	1 nA	I = Messwert
Quellen	> 200 μA bis	2 mA			10 · 10 ⁻⁶ · <i>I</i> +	10 nA	Kalibrieren mit
	> 2 mA bis	20 mA			10 · 10 ⁻⁶ · <i>I</i> +	0,1 μΑ	Fluke 8508A
	> 20 mA bis	200 mA			38 · 10 ⁻⁶ · <i>I</i> +	1 μA	
	> 0,2 A bis	2 A			0,15 · 10 ⁻³ · <i>I</i> +	20 μΑ	
	> 2 A bis	20 A			$0,34 \cdot 10^{-3} \cdot I +$		
Gleichstromleistung	0,1 W bis	336 W	0,33 mA bis	< 0,33 A	0,7 · 10 ⁻³ · P		P = Messwert
Messgeräte	1 W bis	3059 W	0,33 A bis	< 3 A	$0.7 \cdot 10^{-3} \cdot P$		Kalibrierung mit
	10 W bis	20,9 kW	3 A bis	20,5 A	$1\cdot 10^{-3}\cdot P$		Kalibrator Fluke 5520 A
Gleichstromwiderstand	10 mΩ				35 · 10⁻⁶ · <i>R</i>		R = Messwert
Widerstände	1 Ω; 10 k	Ω			$5,2\cdot 10^{-6}\cdot R$		
	1 mΩ bis	10 mΩ			40 · 10-6 · R +	1 μΩ	Vergleich mit Shunt
	> 10 mΩ bis	0,1 Ω			20 · 10 ⁻⁶ · R +	10 μΩ	Fluke Y 5020 und mit
	> 0,1 Ω bis	1Ω			$10 \cdot 10^{-6} \cdot R$ +	25 μΩ	Normalwiderstand
							Tinsley 5685B-1 Ω
	> 1 Ω bis	12 Ω			19 · 10 ⁻⁶ · <i>R</i> +	70 μΩ	Kalibrieren mit DMM HP
	> 12 Ω bis	120 Ω			$13 \cdot 10^{-6} \cdot R +$	$0,7~\mathrm{m}\Omega$	3458A
	> 120 Ω bis	1,2 kΩ			11 \cdot 10 ⁻⁶ \cdot R +	1,5 m Ω	
	> 1,2 kΩ bis	12 kΩ			11 \cdot 10 ⁻⁶ \cdot R +	$15~\text{m}\Omega$	
	> 12 kΩ bis	120 kΩ			11 \cdot 10 ⁻⁶ \cdot R +	0,15 Ω	
	> 120 kΩ bis	1,2 ΜΩ			15 · 10 ⁻⁶ · R +	4 Ω	
	> 1,2 MΩ bis	12 MΩ			$60 \cdot 10^{-6} \cdot R$ +	0,2 kΩ	
	> 12 MΩ bis	$120~\text{M}\Omega$			$0.6 \cdot 10^{-3} \cdot R +$	2 kΩ	
	>1Ω bis	< 2 Ω			15 · 10 ⁻⁶ · R +	10 μΩ	Kalibrieren mit Fluke
	2Ω bis	< 20 Ω			8 · 10 ⁻⁶ · <i>R</i> +	50 μΩ	8508A
	20 Ω bis	< 200 Ω			7 · 10 ⁻⁶ · <i>R</i> +	$0,5~\mathrm{m}\Omega$	
	200 Ω bis	< 2 kΩ			6 · 10 ⁻⁶ · <i>R</i> +	$5~\text{m}\Omega$	
	2 kΩ bis	< 20 kΩ			6 · 10 ⁻⁶ · <i>R</i> +	$50~\text{m}\Omega$	
	20 kΩ bis	< 200 kΩ			$6 \cdot 10^{-6} \cdot R$ +	0,5 Ω	
	200 kΩ bis	< 2 MΩ			7 · 10 ⁻⁶ · <i>R</i> +	5 Ω	
	2 MΩ bis	< 20 MΩ			$10 \cdot 10^{-6} \cdot R +$	50 Ω	
	20 MΩ bis	< 200 MΩ			$40 \cdot 10^{-6} \cdot R +$	1,5 kΩ	
	200 MΩ bis	< 2 GΩ			$0,4 \cdot 10^{-3} \cdot R +$	0,1 ΜΩ	
Gleichstromwiderstand	0 Ω				20 μΩ		Kurzschlussadapter an
Widerstands-							Fluke 8508A
messgeräte							

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

"0 /	İ		ia wiessmogiichk	1		l 5 1
Messgröße /	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweitert Messunsiche		Bemerkungen
Kalibriergegenstand		iiie	verialiteit		riieit	
Gleichstromwiderstand	10 mΩ			$40 \cdot 10^{-6} \cdot R$		Kalibrieren mit
Widerstands-	0,1 Ω 1 Ω			$0.13 \cdot 10^{-3} \cdot R$ $5.2 \cdot 10^{-6} \cdot R$		Kalibrator Fluke 5700A,
messgeräte	1,9 Ω			$0,12 \cdot 10^{-3} \cdot R$		Kalibrierung bei 0,01 Ω
	1,9 Ω 10 Ω			$35 \cdot 10^{-6} \cdot R$		mit Shunt Fluke Y5020,
	19 Ω			$33 \cdot 10^{-6} \cdot R$		Kalibrierung bei
	100 Ω			$23 \cdot 10^{-6} \cdot R$		1Ω u. $10 k\Omega$ mit Normalwiderständen
	190 Ω			$23 \cdot 10^{-6} \cdot R$		Tinsley 5685B-1 Ω u.
	1 kΩ			$16 \cdot 10^{-6} \cdot R$		10 kΩ
	1,9 kΩ			$16 \cdot 10^{-6} \cdot R$		10 K22
	10 kΩ			$5\cdot 10^{-6}\cdot R$		
	19 kΩ			$15 \cdot 10^{-6} \cdot R$		
	100 kΩ			$16 \cdot 10^{-6} \cdot R$		
	190 kΩ			$18 \cdot 10^{-6} \cdot R$		
	1 ΜΩ			$22 \cdot 10^{-6} \cdot R$		
	1,9 ΜΩ			$25 \cdot 10^{-6} \cdot R$		
	10 ΜΩ			$50 \cdot 10^{-6} \cdot R$		
	19 ΜΩ			$60 \cdot 10^{-6} \cdot R$		
	100 ΜΩ			$0,15\cdot 10^{-3}\cdot R$		
	0,01 Ω bis	0,1 Ω		$0,1 \cdot 10^{-3} \cdot R +$		Kalibrierung mit Shunt
	> 0,1 Ω bis	1 Ω		$0,1 \cdot 10^{-3} \cdot R +$		Fluke Y5020 und HP 3458
	> 1 Ω bis	10 Ω		$0,1 \cdot 10^{-3} \cdot R +$	2 mΩ	nach der Strom/ Spannungsmethode
	10.0 his	100.0		0,1 · 10 ⁻³ · R +	20 mO	
	10 Ω bis > 100 Ω bis	100 Ω 1 kΩ		$0.1 \cdot 10^{-3} \cdot R + 0.1 \cdot 10^{-3} \cdot R +$		Kalibrierung mit einem Widerstand und einem
	> 1 kΩ bis	10 kΩ		$0.1 \cdot 10^{-3} \cdot R + 0.1 \cdot 10^{-3} \cdot R$		Multimeter im
	> 10 kΩ bis	100 kΩ		$0.1 \cdot 10^{-3} \cdot R +$		Substitutionsverfahren
	> 100 kΩ bis	1 MΩ		$0.1 \cdot 10^{-3} \cdot R +$		Substitutions verialities
	>1 MΩ bis	10 MΩ		$0.1 \cdot 10^{-3} \cdot R +$		
	> 10 MΩ bis	100 ΜΩ		$0.6 \cdot 10^{-3} \cdot R +$		
	> 100 MΩ bis	10 GΩ		7 · 10 ⁻³ · <i>R</i> +		
Wechselspannung	0,1 V		20 Hz; 40 Hz; 1 kHz	25 μV		Kalibrieren mit Kalibrator
Messgeräte			10 kHz; 20 kHz	25 μV		Fluke 5700A / 5725A
			50 kHz	40 μV		
			100 kHz	50 μV		
	1 V		20 Hz	0,1 mV		
			40 Hz; 1 kHz; 10 kHz	70 μV		
			20 kHz	80 μV		
			50 kHz; 70 kHz; 100 kHz	0,1 mV		
			200 kHz	0,2 mV		
			500 kHz	1 mV 2 mV		
	4 V		1 MHz			
			1 kHz; 10 kHz	0,25 mV 0,35 mV		
	6 V		1 kHz; 10 kHz	,		
	8 V		1 kHz; 10 kHz	0,4 mV		<u> </u>

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung Messgeräte	10 V	20 Hz 40 Hz; 1 kHz 10 kHz; 20 kHz 50 kHz 70 kHz; 100 kHz 200 kHz 500 kHz 1 MHz	0,7 mV 0,5 mV 0,6 mV 1 mV 1,2 mV 3 mV 10 mV 15 mV	Kalibrieren mit Kalibrator Fluke 5700A / 5725A
	13 V	1 kHz; 10 kHz	0,5 mV	
	15 V	1 kHz; 10 kHz	0,8 mV	
	18 V	1 kHz; 10 kHz	1 mV	
	20 V	1 kHz; 10 kHz	1,1 mV	
	100 V	20 Hz	10 mV	
		40 Hz; 1 kHz	7 mV	
		10 kHz; 20 kHz	7 mV	
		50 kHz 70 kHz	20 mV 30 mV	
		100 kHz	37 mV	
	700 V	50 Hz; 500 Hz; 1 kHz	80 mV	
	1000 V	50 Hz; 500 Hz; 1 kHz	0,1 V	
Wechselspannung Messgeräte	2 mV bis 2,2 m > 2,2 mV bis 22 m > 22 mV bis 0,22	V 10 Hz bis 20 Hz > 20 Hz bis 40 Hz > 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 500 kHz > 500 kHz bis 1 MHz V 10 Hz bis 20 Hz > 20 Hz bis 40 Hz > 40 Hz bis 50 kHz > 50 kHz bis 50 kHz > 100 kHz bis 50 kHz > 40 Hz bis 50 kHz > 50 kHz bis 50 kHz > 500 kHz bis 500 kHz > 100 kHz bis 500 kHz > 500 kHz bis 500 kHz > 100 kHz bis 500 kHz > 100 kHz bis 500 kHz > 100 kHz bis 500 kHz	$0.61 \cdot 10^{-3} \cdot U + 7 \mu V$ $0.24 \cdot 10^{-3} \cdot U + 7 \mu V$ $0.13 \cdot 10^{-3} \cdot U + 7 \mu V$ $0.41 \cdot 10^{-3} \cdot U + 7 \mu V$ $1.1 \cdot 10^{-3} \cdot U + 10 \mu V$ $1.4 \cdot 10^{-3} \cdot U + 18 \mu V$ $2 \cdot 10^{-3} \cdot U + 35 \mu V$ $3 \cdot 10^{-3} \cdot U + 40 \mu V$ $0.59 \cdot 10^{-3} \cdot U + 10 \mu V$ $0.22 \cdot 10^{-3} \cdot U + 10 \mu V$ $0.11 \cdot 10^{-3} \cdot U + 10 \mu V$ $0.39 \cdot 10^{-3} \cdot U + 10 \mu V$ $1 \cdot 10^{-3} \cdot U + 12 \mu V$ $1.4 \cdot 10^{-3} \cdot U + 20 \mu V$ $2 \cdot 10^{-3} \cdot U + 40 \mu V$ $3.8 \cdot 10^{-3} \cdot U + 40 \mu V$ $0.63 \cdot 10^{-3} \cdot U + 20 \mu V$ $0.63 \cdot 10^{-3} \cdot U + 15 \mu V$ $0.12 \cdot 10^{-3} \cdot U + 15 \mu V$	U = Messwert

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes	sberei ssspan	ch /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung Messgeräte	> 0,22 V	bis	2,2 V	10 Hz bis 20 Hz > 20 Hz bis < 40 Hz 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 500 kHz > 500 kHz bis 1 MHz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit Kalibrator Fluke 5700A / 5725A V
	> 2,2 V	bis	22 V	10 Hz bis 20 Hz > 20 Hz bis < 40 Hz 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 500 kHz > 500 kHz bis 1 MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V V V
	> 22 V	bis	220 V	10 Hz bis 20 Hz > 20 Hz bis < 40 Hz 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 220 V	bis	1,1 kV	40 Hz bis < 50 Hz 50 Hz bis 1 kHz > 1 kHz bis 20 kHz	$80 \cdot 10^{-6} \cdot U$ + 25 mV	
Wechselspannung Quellen	0,1 V			20 Hz; 40 Hz; 1 kHz 10 kHz; 20 kHz 50 kHz 100 kHz	25 μV 25 μV 40 μV 50 μV	Substitutionsverfahren mit Kalibrator Fluke 5700A / 5725A
	1 V			20 Hz 40 Hz; 1 kHz; 10 kHz 20 kHz 50 kHz; 70 kHz; 100 kHz 200 kHz 500 kHz 1 MHz	0,1 mV 70 μV 80 μV 0,1 mV 0,2 mV 1 mV 2 mV	
	4 V			1 kHz; 10 kHz	0,25 mV	
	6 V			1 kHz; 10 kHz	0,35 mV	
	8 V			1 kHz; 10 kHz	0,4 mV	_
	10 V			20 Hz 40 Hz; 1 kHz 10 kHz; 20 kHz 50 kHz 70 kHz; 100 kHz 200 kHz 500 kHz	0,7 mV 0,5 mV 0,6 mV 1 mV 1,2 mV 3 mV 10 mV	
	13 V			1 MHz 1 kHz; 10 kHz	15 mV 0,5 mV	

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess	sberei ssspan	ch /	Messbedingun Verfahren	gen /	Erweiterte Messunsicherheit		Bemerkungen
Wechselspannung	15 V			1 kHz; 10 kH	lz	0,8 mV		Substitutionsverfahren
Quellen	18 V			1 kHz; 10 kH	lz	1 mV		mit Kalibrator
	20 V			1 kHz; 10 kH	1 kHz; 10 kHz			Fluke 5700A / 5725A
	100 V			20 Hz		10 mV		
				40 Hz; 1 kHz	Z	7 mV		
				10 kHz; 20 kH	Ηz	7 mV		
				50 kHz		20 mV		
				70 kHz 100 kHz		30 mV 37 mV		
	700 V			50 Hz; 500 Hz; 1	l kHz	80 mV		
	1000 V			50 Hz; 500 Hz; 1		0,1 V		
		hic	0.22.1/			· · · · · · · · · · · · · · · · · · ·	15\/	U - Masswort
	0,1 V	DIS	0,22 V	20 Hz bis < 40 Hz bis 2		$0,25 \cdot 10^{-3} \cdot U + 0,12 \cdot 10^{-3} \cdot U +$	•	U = Messwert
					50 kHz	$0.37 \cdot 10^{-3} \cdot U +$		
				> 50 kHz bis 10	00 kHz	0,9 \cdot 10 ⁻³ \cdot U +	•	
	> 0,22 V	bis	2,2 V	20 Hz bis <	< 40 Hz	0,2 · 10 ⁻³ · <i>U</i> +	40 μV	
					20 kHz	80 \cdot 10 ⁻⁶ \cdot U +	•	
					50 kHz	$0.15 \cdot 10^{-3} \cdot U +$	•	
				> 50 kHz bis 10		$0.3 \cdot 10^{-3} \cdot U +$	I	
				> 100 kHz bis 30 > 300 kHz bis 50		$0.5 \cdot 10^{-3} \cdot U + 1.3 $		
					1 MHz	$2,5 \cdot 10^{-3} \cdot U +$		
	> 2,2 V	bis	22 V	20 Hz bis <	40 Hz	0,2 · 10 ⁻³ · <i>U</i> +	0.35 mV	
	,				20 kHz	$0,1 \cdot 10^{-3} \cdot U +$		
					50 kHz	0,15 \cdot 10 ⁻³ \cdot U +		
				> 50 kHz bis 10		$0.3 \cdot 10^{-3} \cdot U +$		
				> 100 kHz bis 30 > 300 kHz bis 50		$0.6 \cdot 10^{-3} \cdot U + 1.6 \cdot 10^{-3} \cdot U +$		
					1 MHz	$3,2 \cdot 10^{-3} \cdot U +$		
	> 22 V	bis	220 V	20 Hz bis <		0,22 · 10 ⁻³ · <i>U</i> +		
	, 22 V	013	220 V		20 kHz	$0,12 \cdot 10^{-3} \cdot U +$		
					50 kHz	0,25 \cdot 10 ⁻³ \cdot U +	4,8 mV	
				> 50 kHz bis 10	00 kHz	0,7 \cdot 10 ⁻³ \cdot U +	10 mV	
	> 220 V	bis	1,1 kV	40 Hz bis <	< 50 Hz	90 · 10-6 · U +		
				50 Hz bis		90 · 10 ⁻⁶ · <i>U</i> +		
					20 kHz	0,15 · 10 ⁻³ · <i>U</i> +		
	1 mV	bis	2,2 mV	10 Hz bis	20 Hz	$1,6 \cdot 10^{-3} \cdot U +$		
				> 20 Hz bis > 40 Hz bis	40 Hz 20 kHz	$0.6 \cdot 10^{-3} \cdot U + 0.3 \cdot 10^{-3} \cdot U +$		
					50 kHz	$0.75 \cdot 10^{-3} \cdot U +$	•	
				> 50 kHz bis 10	00 kHz	1,1 \cdot 10 ⁻³ \cdot U +	4 μV	
				> 100 kHz bis 30		$2,3\cdot 10^{-3}\cdot U$ +		
				> 300 kHz bis 50		$2,6 \cdot 10^{-3} \cdot U +$		
				> 500 kHz bis	1 MHz	3,7 · 10 ⁻³ · <i>U</i> +	11 μν	

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Mess	bereich /	Messbeding	ungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Mess	sspanne	Verfah	ren	Messunsicherheit	
Wechselspannung	> 2,2 mV	bis 7 mV	10 Hz bis	20 Hz	$0.8 \cdot 10^{-3} \cdot U + 4 \mu V$	U = Messwert
Quellen			> 20 Hz bis	40 Hz	$0,29 \cdot 10^{-3} \cdot U + 4 \mu V$	Kalibrierung mit
			> 40 Hz bis		$0.14 \cdot 10^{-3} \cdot U + 4 \mu V$	Fluke 5790A im
			> 20 kHz bis		$0,36 \cdot 10^{-3} \cdot U + 4 \mu V$	Direktmessverfahren
			> 50 kHz bis		$0.58 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
			> 100 kHz bis		$1,2 \cdot 10^{-3} \cdot U + 7 \mu V$	
			> 300 kHz bis		$1,4 \cdot 10^{-3} \cdot U + 11 \mu\text{V}$	
			> 500 kHz bis	1 MHz	$2,4 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
	> 7 mV	bis 22 mV	10 Hz bis	20 Hz	$0,23 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 20 Hz bis	40 Hz	$0,13 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 40 Hz bis	20 kHz	$0.16 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 20 kHz bis	50 kHz	$0.16 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 50 kHz bis	100 kHz	$0,29 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 100 kHz bis	300 kHz	$0.8 \cdot 10^{-3} \cdot U + 9 \mu\text{V}$	
			> 300 kHz bis	500 kHz	$0.95 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
			> 500 kHz bis	1 MHz	$1.8 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
	> 22 mV	bis 70 mV	10 Hz bis	20 Hz	$0.24 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
	/ 22 IIIV	DIS 70 111V	> 20 Hz bis		$0.11 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 40 Hz bis		$50 \cdot 10^{-6} \cdot U + 6 \mu\text{V}$	
			> 20 kHz bis		$0.12 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 50 kHz bis		$0,12 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
			> 100 kHz bis		$0.56 \cdot 10^{-3} \cdot U + 8 \mu\text{V}$	
			> 300 kHz bis		$0.74 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
			> 500 kHz bis		$1.2 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
					-	_
	> 70 mV	bis 220 mV	10 Hz bis		$0.23 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
			> 20 Hz bis		$80 \cdot 10^{-6} \cdot U + 8 \mu\text{V}$	
			> 40 Hz bis		$30 \cdot 10^{-6} \cdot U + 9 \mu\text{V}$	
			> 20 kHz bis		$65 \cdot 10^{-6} \cdot U + 8 \mu\text{V}$	
			> 50 kHz bis		$0.17 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	
			> 100 kHz bis		$0.25 \cdot 10^{-3} \cdot U + 16 \mu\text{V}$	
			> 300 kHz bis		$0.41 \cdot 10^{-3} \cdot U + 17 \mu\text{V}$	
			> 500 kHz bis	1 MHz	$1,1 \cdot 10^{-3} \cdot U + 27 \mu\text{V}$	
	> 220 mV	bis 700 mV	10 Hz bis	20 Hz	$0,23 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
			> 20 Hz bis	40 Hz	$80 \cdot 10^{-6} \cdot U$ + 7 μV	
			> 40 Hz bis	20 kHz	$30 \cdot 10^{-6} \cdot U$ + 11 μ V	
			> 20 kHz bis		$55 \cdot 10^{-6} \cdot U$ + 9 μV	
			> 50 kHz bis	100 kHz	85 · 10 ⁻⁶ · U + 9 μV	
			> 100 kHz bis	300 kHz	0,18 · 10 ⁻⁶ · U + 33 μV	
			> 300 kHz bis		$0.32 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
			> 500 kHz bis	1 MHz	$1,1 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	
	> 700 mV	bis 2,2 V	10 Hz bis	20 Hz	$0,22 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
	7.001111	2,2 V	> 20 Hz bis		$75 \cdot 10^{-6} \cdot U + 8 \mu\text{V}$	
			> 40 Hz bis		$25 \cdot 10^{-6} \cdot U + 17 \mu\text{V}$	
			> 20 kHz bis		$50 \cdot 10^{-6} \cdot U + 11 \mu\text{V}$	
			> 50 kHz bis		$75 \cdot 10^{-6} \cdot U + 12 \mu\text{V}$	
			> 100 kHz bis		$0.16 \cdot 10^{-3} \cdot U + 80 \mu\text{V}$	
			> 300 kHz bis		$0.28 \cdot 10^{-3} \cdot U + 56 \mu\text{V}$	
			> 500 kHz bis		$1 \cdot 10^{-3} \cdot U + 78 \mu\text{V}$	
			- 200 KIIZ DIS	T 1411.17	1 10 0 7 7 7 7 7 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1	

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes	sbere ssspa	ich /	Messbeding Verfahr	ungen /	Erweiter Messunsich	te	Bemerkungen
Wechselspannung Quellen	> 2,2 V	bis	7 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 20 kHz bis > 50 kHz bis > 100 kHz bis > 300 kHz bis > 500 kHz bis	300 kHz	$0,22 \cdot 10^{-3} \cdot U + \\ 75 \cdot 10^{-6} \cdot U + \\ 25 \cdot 10^{-6} \cdot U + \\ 55 \cdot 10^{-6} \cdot U + \\ 90 \cdot 10^{-6} \cdot U + \\ 0,19 \cdot 10^{-3} \cdot U + \\ 0,45 \cdot 10^{-3} \cdot U + \\ 1,4 \cdot 10^{-3} \cdot U + $	17 μV 40 μV 23 μV 28 μV 0,2 mV 0,11 mV	U = Messwert Kaibrierung mit Fluke 5790A im Direktmessverfahren
	>7V	bis	22 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 20 kHz bis > 50 kHz bis > 100 kHz bis > 300 kHz bis > 500 kHz bis	100 kHz 300 kHz	$0,22 \cdot 10^{-3} \cdot U + \\ 75 \cdot 10^{-6} \cdot U + \\ 25 \cdot 10^{-6} \cdot U + \\ 55 \cdot 10^{-6} \cdot U + \\ 90 \cdot 10^{-6} \cdot U + \\ 0,19 \cdot 10^{-3} \cdot U + \\ 0,44 \cdot 10^{-3} \cdot U + \\ 1,3 \cdot 10^{-3} \cdot U + $	83 μV 0,16 mV 0,11 mV 95 μV 0,7 mV 0,38 mV	
	> 22 V	bis	70 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis > 100 kHz bis > 300 kHz bis > 500 kHz bis	300 kHz	$0,22 \cdot 10^{-3} \cdot U + 75 \cdot 10^{-6} \cdot U + 30 \cdot 10^{-6} \cdot U + 65 \cdot 10^{-6} \cdot U + 0,1 \cdot 10^{-3} \cdot U + 0,21 \cdot 10^{-3} \cdot U + 0,46 \cdot 10^{-3} \cdot U + 1,4 \cdot 10^{-3} \cdot U + $	0,36 mV 0,62 mV 0,42 mV 0,38 mV 1,1 mV 0,55 mV	
	> 70 V	bis	220 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0,22 \cdot 10^{-3} \cdot U + \\ 75 \cdot 10^{-6} \cdot U + \\ 30 \cdot 10^{-6} \cdot U + \\ 65 \cdot 10^{-6} \cdot U + \\ 0,1 \cdot 10^{-3} \cdot U + $	1,7 mV 2,8 mV 1,7 mV	
	> 220 V	bis	700 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0,22 \cdot 10^{-3} \cdot U + \\ 0,1 \cdot 10^{-3} \cdot U + \\ 35 \cdot 10^{-6} \cdot U + \\ 0,14 \cdot 10^{-3} \cdot U + \\ 0,56 \cdot 10^{-3} \cdot U + $	9,7 mV 16 mV 7,8 mV	
	> 700 V	bis	1000 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0,22 \cdot 10^{-3} \cdot U + \\ 0,11 \cdot 10^{-3} \cdot U + \\ 35 \cdot 10^{-6} \cdot U + \\ 0,14 \cdot 10^{-3} \cdot U + \\ 0,57 \cdot 10^{-3} \cdot U + $	13 mV 25 mV 13 mV	
	1 kV	bis	6 kV	50 Hz		2 · 10 ⁻³ · <i>U</i>		Kalibrieren mit Multimeter und Hochspannungsteiler

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		oereich / sspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherh	Bemerkungen neit
Wechselspannung Quellen	1 mV	bis 2, <i>i</i>	2 mV	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$0,4 \cdot 10^{-3} \cdot U + 2$ $0,7 \cdot 10^{-3} \cdot U + 2$ $0,5 \cdot 10^{-3} \cdot U + 5$ $0,5 \cdot 10^{-3} \cdot U + 5$ $1,3 \cdot 10^{-3} \cdot U + 5$ $2,8 \cdot 10^{-3} \cdot U + 5$ $7,6 \cdot 10^{-3} \cdot U + 3$	μV Kalibrierung mit μV Kalibrator μV Fluke 5790A μV (Wide Band) im μV Direktmessverfahren
	> 2,2 mV	bis	7 mV	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$0,5 \cdot 10^{-3} \cdot U + 3$ $0,8 \cdot 10^{-3} \cdot U + 3$ $0,6 \cdot 10^{-3} \cdot U + 5$ $0,6 \cdot 10^{-3} \cdot U + 5$ $1 \cdot 10^{-3} \cdot U + 6$ $1,8 \cdot 10^{-3} \cdot U + 5$ $4,2 \cdot 10^{-3} \cdot U + 4$	μV μV μV μV μV
	> 7 mV	bis 22	2 mV	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$0,6 \cdot 10^{-3} \cdot U + 4$ $0,8 \cdot 10^{-3} \cdot U + 3$ $0,7 \cdot 10^{-3} \cdot U + 5$ $0,7 \cdot 10^{-3} \cdot U + 5$ $1,1 \cdot 10^{-3} \cdot U + 7$ $2 \cdot 10^{-3} \cdot U + 5$ $4,3 \cdot 10^{-3} \cdot U + 3$	μV μV μV μV μV
	> 22 mV	bis 70	0 mV	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$\begin{array}{rrrr} 0,6\cdot 10^{-3}\cdot U + & 2 \\ 0,6\cdot 10^{-3}\cdot U + & 2 \\ 0,6\cdot 10^{-3}\cdot U + & 3 \\ 0,6\cdot 10^{-3}\cdot U + & 3 \\ 1,2\cdot 10^{-3}\cdot U + & 3 \\ 1,8\cdot 10^{-3}\cdot U + & 2 \\ 4,1\cdot 10^{-3}\cdot U + & 1 \\ \end{array}$	μV μV μV μV
	> 70 mV	bis 220	0 mV	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$\begin{array}{rrrrr} 0.5 \cdot 10^{-3} \cdot U + & 1 \\ 0.5 \cdot 10^{-3} \cdot U + & 1 \\ 0.6 \cdot 10^{-3} \cdot U + & 2 \\ 0.6 \cdot 10^{-3} \cdot U + & 2 \\ 1.2 \cdot 10^{-3} \cdot U + & 2 \\ 1.8 \cdot 10^{-3} \cdot U + & 1 \\ 4.1 \cdot 10^{-3} \cdot U + & 1 \end{array}$	μV μV μV μV μV
	> 220 mV	bis 700	0 mV	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$\begin{array}{rrrrr} 0.4 \cdot 10^{-3} \cdot U + & 2 \\ 0.4 \cdot 10^{-3} \cdot U + & 2 \\ 0.6 \cdot 10^{-3} \cdot U + & 2 \\ 0.6 \cdot 10^{-3} \cdot U + & 2 \\ 1.2 \cdot 10^{-3} \cdot U + & 2 \\ 1.8 \cdot 10^{-3} \cdot U + & 1 \\ 4.1 \cdot 10^{-3} \cdot U + & 1 \end{array}$	μV μV μV μV μV
	> 700 mV	bis :	2,2 V	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$0,4 \cdot 10^{-3} \cdot U + 2$ $0,4 \cdot 10^{-3} \cdot U + 2$ $0,61 \cdot 10^{-3} \cdot U + 2$ $0,61 \cdot 10^{-3} \cdot U + 2$ $1,2 \cdot 10^{-3} \cdot U + 2$ $1,8 \cdot 10^{-3} \cdot U + 1$ $4,1 \cdot 10^{-3} \cdot U + 1$	μV μV μV μV μV

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Kalibrier- und Messmöglichkeiten (CMC)								
Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen				
Wechselspannung Quellen	> 2,2 V bis 7 \	> 1,2 kHz bis 120 kHz > 120 kHz bis 500 kHz > 500 kHz bis 1,2 MHz > 1,2 MHz bis 2 MHz > 2 MHz bis 10 MHz > 10 MHz bis 20 MHz > 20 MHz bis 30 MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U = Messwert Kalibrierung mit Kalibrator Fluke 5790A (Wide Band) im Direktmessverfahren				
Wechselstromstärke Messgeräte	0,2 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	90 nA	Kalibrierung mit Kalibrator Fluke				
	0,5 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	0,14 μΑ	5700A / 5725A				
	1 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	0,24 μΑ					
	2 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	0,4 μΑ					
	5 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	1 μΑ					
	10 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	2 μΑ					
	20 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	3 μΑ					
	50 mA	40 Hz; 100 Hz; 500 Hz; 1 kHz	10 μΑ					
	0,1 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	20 μΑ	Kalibrieren mit Kalibrato Fluke 5700A / 5725A				
	0,2 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	40 μΑ					
	0,5 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	0,12 mA					
	1 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	0,22 mA					
	2 A	40 Hz; 100 Hz 500 Hz; 1 kHz	0,4 mA 0,45 mA					
	3 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	1 mA					
	5 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	1,5 mA					
	10 A	40 Hz; 100 Hz; 500 Hz; 1 kHz	3 mA					
	50 μA bis 220 μ <i>A</i>	10 Hz bis 20 Hz > 20 Hz bis 40 Hz > 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	0,81 \cdot 10 ⁻³ \cdot I + 50 nA 0,44 \cdot 10 ⁻³ \cdot I + 50 nA 0,16 \cdot 10 ⁻³ \cdot I + 50 nA 0,7 \cdot 10 ⁻³ \cdot I + 0,1 μ A 2 \cdot 10 ⁻³ \cdot I + 0,2 μ A	I = Messwert Kalibrieren mit Kalibrator Fluke 5700A / 5725A				

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes	sbere ssspa	ich /	Messbeding Verfahi	ungen /	Erweiter Messunsiche	te	Bemerkungen
Wechselstromstärke Messgeräte	> 220 μA	bis	2,2 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 1 kHz bis > 5 kHz bis	40 Hz 1 kHz 5 kHz	$0,81 \cdot 10^{-3} \cdot I + 0,44 \cdot 10^{-3} \cdot I + 0,16 \cdot 10^{-3} \cdot I + 0,7 \cdot 10^{-3} \cdot I + 2 \cdot 10^{-3} \cdot I +$	0,1 μA 0,1 μA 0,8 μA	I = Messwert Kalibrieren mit Kalibrator Fluke 5700A / 5725A
	> 2,2 mA	bis	22 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 1 kHz bis > 5 kHz bis	40 Hz 1 kHz 5 kHz	$0.81 \cdot 10^{-3} \cdot I +$ $0.44 \cdot 10^{-3} \cdot I +$ $0.16 \cdot 10^{-3} \cdot I +$ $0.7 \cdot 10^{-3} \cdot I +$ $2 \cdot 10^{-3} \cdot I +$	0,7 μA 0,7 μA 7 μA	
	> 22 mA	bis	220 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 1 kHz bis > 5 kHz bis	40 Hz 1 kHz 5 kHz	$0.81 \cdot 10^{-3} \cdot I + \\ 0.44 \cdot 10^{-3} \cdot I + \\ 0.16 \cdot 10^{-3} \cdot I + \\ 0.7 \cdot 10^{-3} \cdot I + \\ 2 \cdot 10^{-3} \cdot I + \\ $	6 μΑ 7 μΑ 60 μΑ	
	> 220 mA	bis	2,2 A	> 20 Hz bis > 1 kHz bis > 5 kHz bis	5 kHz	$0.75 \cdot 10^{-3} \cdot I + 0.87 \cdot 10^{-3} \cdot I + 11 \cdot 10^{-3} \cdot I +$	0,14 mA	
	> 2,2 A		11 A	> 40 Hz bis > 1 kHz bis > 5 kHz bis	5 kHz	$0,45 \cdot 10^{-3} \cdot I + 0,98 \cdot 10^{-3} \cdot I + 4 \cdot 10^{-3} \cdot I +$	0,53 mA 0,9 mA	
Wechselstromstärke Messgeräte Wandlerverfahren, Toroidwandler	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	45 Hz bis	65 Hz	$5 \cdot 10^{-3} \cdot I + 5 \cdot 10^{-3} \cdot I + 5 \cdot 10^{-3} \cdot I +$	0,2 A 0,2 A	I = Messwert Kalibrieren mit Kalibrator Fluke Spule 5500A/Coil
	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	> 65 Hz bis		$ \begin{array}{r} 11 \cdot 10^{-3} \cdot I + \\ 11 \cdot 10^{-3} \cdot I + \\ 11 \cdot 10^{-3} \cdot I + \\ \end{array} $	0,2 A 0,2 A	
Wechselstromstärke Messgeräte Wandlerverfahren	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	45 Hz bis		$8 \cdot 10^{-3} \cdot I + 8 \cdot 10^{-3} \cdot I + 8 \cdot 10^{-3} \cdot I +$	0,3 A 1 A	
	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	> 65 Hz bis		$14 \cdot 10^{-3} \cdot I + 14 \cdot 10^{-3} \cdot I + 14 \cdot 10^{-3} \cdot I + $	0,3 A 1 A	
Wechselstromstärke Quellen	1 mA	bis	10 mA	10 Hz bis > 20 Hz bis > 40 Hz bis	40 Hz	$0,23 \cdot 10^{-3} \cdot I + 82 \cdot 10^{-6} \cdot I + 50 \cdot 10^{-6} \cdot I +$	0,4 μA 0,4 μA	I = Messwert Direktmessung mit Shunt Fluke A40
	> 10 mA	bis	20 mA	10 Hz bis > 20 Hz bis > 40 Hz bis	40 Hz	$0,24 \cdot 10^{-3} \cdot I + 95 \cdot 10^{-6} \cdot I + 60 \cdot 10^{-6} \cdot I +$	0,3 μΑ	
	> 20 mA	bis	50 mA	10 Hz bis > 20 Hz bis > 40 Hz bis	40 Hz	$0,26 \cdot 10^{-3} \cdot I + 0,1 \cdot 10^{-3} \cdot I + 70 \cdot 10^{-6} \cdot I +$	1,4 μΑ	
	> 50 mA	bis	100 mA	10 Hz bis > 20 Hz bis > 40 Hz bis	40 Hz	$0,24 \cdot 10^{-3} \cdot I + 0,1 \cdot 10^{-3} \cdot I + 70 \cdot 10^{-6} \cdot I +$	2 μΑ	

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes	sbere ssspa	ich /	Messbedingu Verfahre	ngen /	Erweiter Messunsiche	te	Bemerkungen
Wechselstromstärke Quellen	> 100 mA		200 mA	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,24 \cdot 10^{-3} \cdot I +$ $0,1 \cdot 10^{-3} \cdot I +$ $70 \cdot 10^{-6} \cdot I +$	1,5 μA 3 μA	I = Messwert Direktmessung mit Shunt Fluke A40
	> 200 mA	bis	500 mA	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,24 \cdot 10^{-3} \cdot I +$ $0,11 \cdot 10^{-3} \cdot I +$ $95 \cdot 10^{-6} \cdot I +$	40 μA	
	> 500 mA	bis	1 A	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,25 \cdot 10^{-3} \cdot I + 0,12 \cdot 10^{-3} \cdot I + 0,95 \cdot 10^{-3} \cdot I +$	41 μA	
	> 1 A	bis	2 A	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,25 \cdot 10^{-3} \cdot I +$ $0,12 \cdot 10^{-3} \cdot I +$ $90 \cdot 10^{-6} \cdot I +$	60 μA	
	> 2 A	bis	3 A	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,23 \cdot 10^{-3} \cdot I + $ $75 \cdot 10^{-6} \cdot I + $ $40 \cdot 10^{-6} \cdot I + $	0,18 mA	
	> 3 A	bis	5 A	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,23 \cdot 10^{-3} \cdot I + $ $75 \cdot 10^{-6} \cdot I + $ $40 \cdot 10^{-6} \cdot I + $	0,13 mA	
	> 5 A	bis	10 A	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,24 \cdot 10^{-3} \cdot I +$ $95 \cdot 10^{-6} \cdot I +$ $50 \cdot 10^{-6} \cdot I +$	0,15 mA	
	> 10 A	bis	20 A	10 Hz bis > 20 Hz bis > 40 Hz bis	20 Hz 40 Hz 10 kHz	$0,24 \cdot 10^{-3} \cdot I +$ $95 \cdot 10^{-6} \cdot I +$ $50 \cdot 10^{-6} \cdot I +$	0,15 mA	
	0,2 mA		40 Hz; 100 Hz; 500 Hz; 1 kHz		90 nA		Substitutionsverfahren mit Kalibrator	
	0,5 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz		0,14 μΑ		Fluke 5700A / 5725A
	1 mA			40 Hz; 100 I 500 Hz; 1 k	Hz	0,24 μΑ		
	2 mA			40 Hz; 100 I 500 Hz; 1 k	Hz	0,4 μΑ		
	5 mA			40 Hz; 100 I 500 Hz; 1 k	Hz	1 μΑ		
	20 mA			40 Hz; 100 I 500 Hz; 1 k 40 Hz; 100 I	Hz	2 μA 3 μA		
	50 mA			500 Hz; 1 k	Hz	- 5 μA 		
	0,1 A			500 Hz; 1 k	Hz	20 μΑ		
				500 Hz; 1 k	Hz	-		
	0,2 A			40 Hz; 100 I 500 Hz; 1 k		40 μΑ		

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		Messbereich / Messspanne		gungen / ren	Erweiterte Messunsicherheit	Bemerkungen
Wechselstromstärke Quellen	0,5 A		40 Hz; 10 500 Hz; 1		0,12 mA	Substitutionsverfahren mit Kalibrator
	1 A		40 Hz; 10 500 Hz; 1	,	0,22 mA	Fluke 5700A / 5725A
	2 A		40 Hz 100 Hz 500 Hz; 1 kHz		0,4 mA 0,45 mA 0,5 mA	
	3 A		40 Hz; 10 500 Hz; 1	,	1 mA	
	5 A		40 Hz; 10 500 Hz; 1		1,5 mA	
	10 A		40 Hz; 10 500 Hz; 1		3 mA	
	220 µA bis > 2,2 mA bis > 22 mA bis > 220 mA bis > 2,2 A bis	2,2 mA 22 mA 220 mA 2,2 A 11 A	40 Hz bis	1 kHz	0,15 \cdot 10 ⁻³ \cdot I + 0,1 μ A 0,15 \cdot 10 ⁻³ \cdot I + 0,8 μ A 0,37 \cdot 10 ⁻³ \cdot I + 7 μ A 0,75 \cdot 10 ⁻³ \cdot I + 60 μ A 0,44 \cdot 10 ⁻³ \cdot I + 0,35 μ A	I = Messwert
-	> 11 A bis	20 A			$0.31 \cdot 10^{-3} \cdot I + 0.5 \text{ mA}$	mit Shunt Y5020
Wechselstromwirk- leistung Messgeräte	0,1 W bis 0,1 W bis 0,1 W bis 0,1 W bis 1 W bis 10 W bis 10 W bis	9,15 W 33,5 W 91,5 W 336,5 W 917 W 2243 W 4589 W 20,9 kW	3,3 mA bis 9 mA bis 33 mA bis 90 mA bis 0,33 A bis 0,9 A bis 2,2 A bis 4,5 A bis	< 9 mA < 33 mA < 90 mA < 0,33 A < 0,9 A < 2,2 A < 4,5 A 20,5 A	$2 \cdot 10^{-3} \cdot P$ $1,7 \cdot 10^{-3} \cdot P$ $2 \cdot 10^{-3} \cdot P$ $1,7 \cdot 10^{-3} \cdot P$ $2 \cdot 10^{-3} \cdot P$ $1,8 \cdot 10^{-3} \cdot P$ $2 \cdot 10^{-3} \cdot P$ $1,8 \cdot 10^{-3} \cdot P$	P = Messwert Kalibrieren mit Fluke 5520A Frequenzen von 45 Hz bis 65 Hz $\cos \varphi$ = 1
Kapazität Messgeräte	0,19 nF bis 0,4 nF bis 1,1 nF bis 3,3 nF bis 11 nF bis 33 nF bis 110 nF bis 0,33 µF bis 1,1 µF bis 3,3 µF bis	0,39 nF 1,09 nF 3,29 nF 10,9 nF 32,9 nF 109,9 nF 329 nF 1,09 μF 3,29 μF	10 Hz bis 10 Hz bis	10 kHz 10 kHz 3 kHz 1 kHz 1 kHz 1 kHz 1 kHz 600 Hz 300 Hz 150 Hz	$40 \cdot 10^{-3} \cdot C$ $18 \cdot 10^{-3} \cdot C$ $12 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$	C = Messwert mit Kalibrator Fluke 5520A

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Kapazität Kondensatoren	1 pF; 10 pF	10 kHz	0,63 · 10 ⁻³	Direktmessung von
	100 pF; 1000 pF	1 kHz und 10 kHz 100 kHz	0,63 · 10 ⁻³ 0,67 · 10 ⁻³	Kondensatoren
	10 nF; 100 nF 1 μF	1 kHz 1 kHz	0,63 · 10 ⁻³ 0,61 · 10 ⁻³	
	1 pF; 10 pF	10 kHz	0,26 · 10 ⁻³	Kalibrieren von
	100 pF; 1000 pF	1 kHz und 10 kHz 100 kHz	0,26 · 10 ⁻³ 0,36 · 10 ⁻³	Kondensatoren im Substitutionsverfahren
-	10 nF; 100 nF; 1 μF	1 kHz	0,26 · 10 ⁻³	
Kapazitätsmessbrücken	1 pF; 10 pF	10 kHz	0,25 · 10 ⁻³	
	100 pF; 1000 pF	1 kHz und 10 kHz 100 kHz	0,25 · 10 ⁻³ 0,30 · 10 ⁻³	
	10 nF; 100 nF; 1 μF	1 kHz	0,25 · 10-3	
Induktivität Induktivitäten	100 μH 1 mH; 10 mH; 100 mH; 1 H	1 kHz und 10 kHz 100 Hz und 1 kHz	1,5 · 10 ⁻³ 1,5 · 10 ⁻³	Direktmessung von Induktivitäten
Induktivitäten	100 μΗ	1 kHz 10 kHz	0,50 · 10 ⁻³ 0,55 · 10 ⁻³	Kalibrieren von Induktivitäten im
	1 mH; 10 mH; 100 mH; 1 H	100 Hz 1 kHz	0,50 · 10 ⁻³ 0,50 · 10 ⁻³	Substitutionsverfahren
Induktivitäts- messbrücken	100 μΗ	1 kHz 10 kHz	0,50 · 10 ⁻³ 0,50 · 10 ⁻³	
	1 mH; 10 mH; 100 mH; 1 H	100 Hz 1 kHz	0,50 · 10 ⁻³ 0,50 · 10 ⁻³	
Gleichspannung Rechteckgeneratoren	0 V bis <0,12 V 0,12 V bis <1,2 V 1,2 V bis 12 V >12 V bis 120 V >120 V bis 1000 V	DC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U = Messwert Ermittlung mittels DMM; HP 3458
Rechteckspannung Rechteckgeneratoren	0 V bis <0,12 V 0,12 V bis <1,2 V 1,2 V bis 12 V >12 V bis 120 V >120 V bis 1000 V	10 Hz, 100 Hz, 1 kHz	$\begin{array}{ccccc} 0.3 \cdot 10^{-3} \cdot U + & 6 \mu \text{V} \\ 0.3 \cdot 10^{-3} \cdot U + & 6 \mu \text{V} \\ 0.3 \cdot 10^{-3} \cdot U + & 6 \mu \text{V} \\ 0.3 \cdot 10^{-3} \cdot U + & 0.2 \text{mV} \\ 0.3 \cdot 10^{-3} \cdot U + & 0.2 \text{mV} \end{array}$	Ermittlung mittels Sample-DMM; HP 3458
	0,06 V bis <0,12 V 0,12 V bis <1,2 V 1,2 V bis 12 V >12 V bis 120 V	10 kHz, 100 kHz	$\begin{array}{lll} 0.7 \cdot 10^{-3} \cdot U + & 0.1 \text{ mV} \\ 0.7 \cdot 10^{-3} \cdot U + & 0.9 \text{ mV} \\ 0.7 \cdot 10^{-3} \cdot U + & 9 \text{ mV} \\ 0.7 \cdot 10^{-3} \cdot U + & 90 \text{ mV} \end{array}$	

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

	_ K	alib	rier- un	id Messmöglich	keiten (CMC)	1
Messgröße / Kalibriergegenstand		sberei ssspar	-	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Impulsamplitude Impulsgeneratoren	5 mV	bis	50 V	50 Ω	85 · 10 ⁻³ · <i>U</i>	Ermittlung mittels Oszilloskop $t_{\rm r}, t_{\rm H} > 10 \cdot t_{\rm r}_{\rm System}$ $t_{\rm r}$: Impulsanstiegszeit, $t_{\rm H}$: Impulshalbwertbreite $t_{\rm r,System}$: Anstiegszeit des Messsystems
Anstiegszeit Impulsgeneratoren	825 ps	bis	100 ms		$60 \cdot 10^{-3} \cdot t_{\rm r} + U_{\rm Tf}$	Die Systemanstiegszeit muss bei der Ermittlung von t _r mittels Oszilloskop berücksichtigt werden
Periodendauer Impulsgeneratoren	1 ns	bis	1 s		$3.5 \cdot 10^{-3} \cdot t + 0.2 \text{ ns}$	Ermittlung mittels Oszilloskop
	0,33 ns	bis	1 s		$1 \cdot 10^{-10} \cdot t + U_{\mathrm{Tf}}$	Ermittlung über $1/\mathrm{Frequenz}$ U_{Tf} : Triggerunsicherheit
Vertikalablenkung	6 mV	bis	200 V	1 MΩ (1 kHz)	$5\cdot 10^{-3}\cdot U$	Die Messunsicherheit
	6 mV	bis	3 V	50 Ω (1 kHz)	5 · 10 ⁻³ · <i>U</i>	bezieht sich auf die Ge- nerierung der Kalibrier- signale inkl. einem Able- sefehler von 0,1 % bei DSOs mit selbstschrei- bendem Raster
	6 mV	bis	200 V	1 MΩ (1 kHz)	$6\cdot 10^{ ext{-3}}\cdot U$	Die Messunsicherheit
	6 mV	bis	3 V	50 Ω (1 kHz)	$6\cdot 10^{-3}\cdot U$	bezieht sich auf die Ge- nerierung der Kalibrier- signale inkl. einem Able- sefehler von 0,3 % bei Bildröhren mit festem Raster
Ablenkung horizontal Periodendauer	10 ns; 8 400	0 ns; 1 ns bis !			4 · 10 ⁻³ · t	Ablesefehler von 0,3 % bei Bildröhren mit festem Raster
	10 ns; 8 400	0 ns; 1 ns bis !			2,5 · 10 ⁻³ · <i>t</i>	Ablesefehler von 0,1 % bei DSOs mit selbst- schreibendem Raster
Bandbreite	100 kHz	bis	1 GHz	0,1 V bis 1 V	40 · 10 ⁻³ · <i>b</i>	b = Messwert
	> 1 GHz	bis	3 GHz	0,1 V bis 1 V	60 · 10 ⁻³ · <i>b</i>	Ermittlung des 3-dB- Punktes mittels Powersplitter und HF-Spannungsmessung
Anstiegszeit	360 ps	bis	10 ns		15 ps	Wiederholrate 10 Hz bis 1 MHz, mit Tektronix-Pulskopf
HF-Spannung HF-Generatoren	0,1 V	bis	2 V	100 kHz bis 1 GH: > 1 GHz bis 3 GH: > 3 GHz bis 18 GH:	z $30\cdot 10^{-3}\cdot U$	Direktmessung der Spannung mit R&S Z-51

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

	1				· .	•	•
Messgröße / Kalibriergegenstand		sbere ssspa	eich / inne	Messbedingu Verfahre		Erweiterte Messunsicherheit	Bemerkungen
HF-Spannung HF-Messgeräte HF-Generatoren	0,5 V	bis	1 V	100 kHz bis > 10 MHz bis > 30 MHz bis > 50 MHz bis > 50 MHz bis > 500 MHz bis	10 MHz 30 MHz 50 MHz 500 MHz 1 GHz	$2 \cdot 10^{-3} \cdot U$ $3 \cdot 10^{-3} \cdot U$ $5 \cdot 10^{-3} \cdot U$ $10 \cdot 10^{-3} \cdot U$ $15 \cdot 10^{-3} \cdot U$	Spannungsgenerierung über T-Stück, N-Konnek- tor, bei anderen Konnek- toren erhöht sich die Messunsicherheit
HF-Spannung HF-Messgeräte	0,1 V	bis	1 V	100 kHz bis > 1 GHz bis	10 MHz 3 GHz	$15 \cdot 10^{-3} \cdot U$ $35 \cdot 10^{-3} \cdot U$	Direktmessung am Generator R&S SMT-03
	0,1 V	bis	1 V	100 kHz bis > 1 GHz bis > 3 GHz bis	1 GHz 3 GHz 18 GHz	$15 \cdot 10^{-3} \cdot U$ $30 \cdot 10^{-3} \cdot U$ $45 \cdot 10^{-3} \cdot U$	Spannungsgenerierung über Powersplitter; Spannungsmessung mit R&S Z-51
Zeit und Frequenz Frequenz		,	. MHz MHz	Phasenzeitdiffi messungen i Messzeiten ≥	über	5 · 10 ⁻¹¹ · <i>f</i>	f = Frequenz
	1 Hz	bis	3 GHz	Digitale Frequ messung auf Zä		1 · 10 ⁻¹⁰ · f + U_{Tf}	$U_{ m Tf}$ = Triggerunsicherheit
	3 GHz	bis	26,5 GHz			$2\cdot 10^{ ext{-}10}\cdot f$ + 1 Hz	
	1 Hz	bis	10 kHz			3,3 mHz	Optische Verfahren (Drehzahlmesser)
Zeitintervall	10 ms	bis	10 s			$6 \cdot 10^{-11} \cdot t + 2 \text{ ns} + U_{\text{Tt}}$	U_{Tt} = Triggerunsicherheit t = Zeitintervall

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichstrom und Niederfrequenz Gleichspannung Messgeräte	0 mV bis 0,22 v > 0,22 V bis 2,2 v > 2,2 V bis 11 v	,	$8 \cdot 10^{-6} \cdot U + 3 \mu V$ $9 \cdot 10^{-6} \cdot U + 3 \mu V$ $10 \cdot 10^{-6} \cdot U + 6 \mu V$	U = Messwert Kalibrieren mit Kalibrator Fluke 5700A
	> 11 V bis 22 V > 22 V bis 220 V > 220 V bis 1,1 k	,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Gleichspannung Quellen	0 mV bis 0,12 V >0,12 V bis 1,2 V >1,2 V bis 12 V >12 V bis 200 V >100 V bis 500 V >500 V bis 700 V >700 V bis 1 kV		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit DMM HP 3458A
	1 kV bis 6 k		$1\cdot 10^{-3}\cdot U$	Kalibrieren mit Multimeter und Hochspannungsteiler

Gültig ab: 10.01.2024 Ausstellungsdatum: 10.01.2024

Seite 20 von 70

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	İ	ereich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichstromstärke Messgeräte	1 μA b > 0,12 mA b > 1,2 mA b > 12 mA b > 12 mA b > 11 mA b > 11 A b	is 1,2 mA is 12 mA is 0,12 A is 1,05 A is 11 A		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I = Messwert Substitutionsverfahren mit DMM HP 3458A
	> 20 A b	is 50 A		0,5 · 10 ⁻³ · <i>I</i> + 5 mA	Substitutionsverfahren mit DMM HP 3458 / Shunt H&B 0,01 Ω
Gleichstromstärke Messgeräte mit Wandlerverfahren	> 10 A b > 16,5 A b > 150 A b	is 150 A		$6 \cdot 10^{-3} \cdot I + 0.1 \text{ A}$ $6 \cdot 10^{-3} \cdot I + 0.2 \text{ A}$ $6 \cdot 10^{-3} \cdot I + 0.5 \text{ A}$	Kalibrierung mit Fluke 5500A / Coil
Gleichstromstärke Quellen	1 μA b > 0,12 mA b > 1,2 mA b > 12 mA b > 0,12 A b	is 1,2 mA is 12 mA is 0,12 A		25 · $10^{-6} \cdot I$ + 2 nA 25 · $10^{-6} \cdot I$ + 15 nA 25 · $10^{-6} \cdot I$ + 0,15 μ A 45 · $10^{-6} \cdot I$ + 1,3 μ A 0,13 · $10^{-3} \cdot I$ + 21 μ A	Kalibrieren mit DMM HP 3458A
	> 1,05 A b > 11 A b			50 · 10 ⁻⁶ · <i>I</i> + 0,4 mA 55 · 10 ⁻⁶ · <i>I</i> + 0,25 mA	Kalibrieren mit DMM HP 3458A u. Shunt Fluke Y5020
	> 20 A b	is 50 A		0,5 · 10 ⁻³ · <i>I</i> + 5 mA	Substitutionsverfahren mit HP 3458A und H&B 0,01 Ω
Gleichstromwiderstand Widerstände	1 mΩ b > 10 mΩ b > 0,1 Ω b	is 100 mΩ		$45 \cdot 10^{-6} \cdot R + 5 \mu\Omega$ $45 \cdot 10^{-6} \cdot R + 50 \mu\Omega$ $40 \cdot 10^{-6} \cdot R + 0,1 m\Omega$	R = Messwert Vergleich mit Shunt Fluke Y 5020 und mit Normalwiderstand Tinsley 5685B-1 Ω
	> 1 Ω b > 12 Ω b > 120 Ω b > 1,2 kΩ b > 12 kΩ b > 120 kΩ b > 1,2 MΩ b > 1,2 MΩ b > 1,2 MΩ b			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kalibrieren mit DMM HP 3458A

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichstromwiderstand Messgeräte	0,01 Ω 1 Ω 1,9 Ω 10 Ω 19 Ω 100 Ω 190 Ω 1 kΩ 1,9 kΩ 10 kΩ 19 kΩ 100 kΩ 190 kΩ 1 MΩ 1,9 MΩ 1,9 MΩ 10 MΩ 19 MΩ 19 MΩ		0,13 · 10 ⁻³ · R 0,12 · 10 ⁻³ · R 0,12 · 10 ⁻³ · R 42 · 10 ⁻⁶ · R 49 · 10 ⁻⁶ · R 27 · 10 ⁻⁶ · R 19 · 10 ⁻⁶ · R 19 · 10 ⁻⁶ · R 18 · 10 ⁻⁶ · R 18 · 10 ⁻⁶ · R 21 · 10 ⁻⁶ · R 22 · 10 ⁻⁶ · R 23 · 10 ⁻⁶ · R 24 · 10 ⁻⁶ · R 27 · 10 ⁻⁶ · R 28 · 10 ⁻⁶ · R 29 · 10 ⁻⁶ · R 20 · 10 ⁻⁶ · R 20 · 10 ⁻⁶ · R 20 · 10 ⁻⁶ · R 20 · 10 ⁻⁶ · R	Kalibrierung bei 0,01 Ω mit Shunt Fluke Y 5020, Kalibrierung ab 1 Ω mit Kalibrator Fluke 5700A
	$0,01 \Omega$ bis $0,1 \Omega$ > $0,1 \Omega$ bis 1Ω > 1Ω bis 10Ω		$\begin{array}{ccccc} 0.1 \cdot 10^{\text{-3}} \cdot R + & 20 \; \mu\Omega \\ 0.1 \cdot 10^{\text{-3}} \cdot R + & 0.2 \; \text{m}\Omega \\ 0.1 \cdot 10^{\text{-3}} \cdot R + & 2 \; \text{m}\Omega \end{array}$	Kalibrierung mit Shunt Fluke Y5020 und HP 3458 nach der Strom/ Spannungsmethode
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{llllllllllllllllllllllllllllllllllll$	Kalibrierung mit einem Widerstand und einem Multimeter im Substitutionsverfahren
Gleichstromleistung Messgeräte	0,1 W bis 336 W 1 W bis 3059 W 10 W bis 20,9 kW	3,3 mA bis < 0,33 A 0,33 A bis < 3 A 3 A bis 20,5 A	0,7 · 10 ^{·3} · <i>P</i> 0,7 · 10 ^{·3} · <i>P</i> 1 · 10 ^{·3} · <i>P</i>	P = Messwert Kalibrieren mit Kalibrator Fluke 5520A
Wechselspannung Messgeräte	0,1 V	20 Hz; 40 Hz; 1 kHz 10 kHz; 20 kHz 50 kHz 100 kHz	25 μV 25 μV 40 μV 50 μV	Kalibrieren mit Kalibrator Fluke 5700A
	1 V	20 Hz 40 Hz; 1 kHz; 10 kHz 20 kHz 50 kHz; 70 kHz; 100 kHz 200 kHz 500 kHz 1 MHz	0,1 mV 70 μV 80 μV 0,1 mV 0,2 mV 1 mV 2 mV	
	4 V	1 kHz; 10 kHz	0,25 mV	
	6 V 8 V	1 kHz; 10 kHz 1 kHz; 10 kHz	0,35 mV 0,4 mV	-

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Messbereich /	Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messspanne	Verfahren	Messunsicherheit	
Wechselspannung	10 V	20 Hz	0,7 mV	Kalibrieren mit
Messgeräte		40 Hz; 1 kHz	0,5 mV	Kalibrator Fluke 5700A
		10 kHz; 20 kHz	0,6 mV	
		50 kHz	1 mV	
		70 kHz; 100 kHz	1,2 mV	
		200 kHz	3 mV	
		500 kHz	10 mV	
		1 MHz	15 mV	
	13 V	1 kHz; 10 kHz	0,5 mV	
	15 V	1 kHz; 10 kHz	0,8 mV	
	18 V	1 kHz; 10 kHz	1 mV	
	20 V	1 kHz; 10 kHz	1,1 mV	
	100 V	20 Hz	10 mV	
		40 Hz; 1 kHz	7 mV	
		10 kHz; 20 kHz	7 mV	
		50 kHz	20 mV	
		70 kHz	30 mV	
		100 kHz	37 mV	
	700 V	50 Hz; 500 Hz; 1 kHz	80 mV	-
	1000 V	50 Hz; 500 Hz; 1 kHz	0,1 V	
	2 mV bis 2,2 mV		$0.61 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	U = Messwert
		> 20 Hz bis 40 Hz	$0.24 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	Kalibrieren mit Kalibrator
		> 40 Hz bis 20 kHz	$0.13 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	Fluke 5700A / 5725A
		> 20 kHz bis 50 kHz	$0.41 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	
		> 50 kHz bis 100 kHz	$1,1 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
		> 100 kHz bis 300 kHz	$1.4 \cdot 10^{-3} \cdot U + 18 \mu\text{V}$	
		> 300 kHz bis 500 kHz	$2 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	
		> 500 kHz bis 1 MHz	$3 \cdot 10^{-3} \cdot U + 40 \mu\text{V}$	4
	> 2,2 mV bis 22 mV		$0.59 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
		> 20 Hz bis 40 Hz	$0,22 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
		> 40 Hz bis 20 kHz	$0.11 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
		> 20 kHz bis 50 kHz	$0.39 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
		> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
		> 100 kHz bis 300 kHz	$1,4 \cdot 10^{-3} \cdot U + 20 \mu\text{V}$	
		> 300 kHz bis 500 kHz	$2 \cdot 10^{-3} \cdot U + 40 \mu\text{V}$	
		> 500 kHz bis 1 MHz	3,8 · 10 ⁻³ · <i>U</i> + 40 μV	_
	> 22 mV bis 220 mV		$0.63 \cdot 10^{-3} \cdot U + 20 \mu\text{V}$	
		> 20 Hz bis 40 Hz	$0.25 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
		> 40 Hz bis 20 kHz	$0.12 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
		> 20 kHz bis 50 kHz	$0.37 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
		> 50 kHz bis 100 kHz	$0.9 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	
		> 100 kHz bis 300 kHz	$1,2 \cdot 10^{-3} \cdot U + 40 \mu\text{V}$	
		> 300 kHz bis 500 kHz	$2 \cdot 10^{-3} \cdot U + 50 \mu\text{V}$	
		> 500 kHz bis 1 MHz	$3.8 \cdot 10^{-3} \cdot U + 0.13 \text{ mV}$	

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess	sbereio ssspan	ch /	Messbedingunger Verfahren	1	Erweiter Messunsiche	te	Bemerkungen
Wechselspannung Messgeräte	> 0,22 V	bis	2,2 V	10 Hz bis 20 > 20 Hz bis 40 > 40 Hz bis 20 k > 20 kHz bis 50 k > 50 kHz bis 100 k > 100 kHz bis 300 k > 300 kHz bis 500 k > 500 kHz bis 500 k > 500 kHz bis 1 M	Hz :Hz :Hz :Hz :Hz	$0,64 \cdot 10^{-3} \cdot U + 0,2 \cdot 10^{-3} \cdot U + 85 \cdot 10^{-6} \cdot U + 0,15 \cdot 10^{-3} \cdot U + 0,3 \cdot 10^{-3} \cdot U + 0,5 \cdot 10^{-3} \cdot U + 1,3 \cdot 10^{-3} \cdot U + 2,5 \cdot 10^{-3} \cdot U + $	40 μV 18 μV 30 μV 90 μV 0,17 mV 0,45 mV	<i>U</i> = Messwert Kalibrieren mit Kalibrator Fluke 5700A / 5725A
	> 2,2 V	bis	22 V	10Hz bis 20 > 20 Hz bis 40 > 40 Hz bis 20 k > 20 kHz bis 50 k > 50 kHz bis 100 k > 100 kHz bis 300 k > 300 kHz bis 500 k > 500 kHz bis 1 M	Hz :Hz :Hz :Hz :Hz	$0,64 \cdot 10^{-3} \cdot U + \\ 0,2 \cdot 10^{-3} \cdot U + \\ 90 \cdot 10^{-6} \cdot U + \\ 0,15 \cdot 10^{-3} \cdot U + \\ 0,3 \cdot 10^{-3} \cdot U + \\ 0,6 \cdot 10^{-3} \cdot U + \\ 1,6 \cdot 10^{-3} \cdot U + \\ 3,2 \cdot 10^{-3} \cdot U + \\ $	0,35 mV 0,13 mV 0,25 mV 0,45 mV 2 mV 5,5 mV	
	> 22 V		220 V	10 Hz bis 20 > 20 Hz bis 40 > 40 Hz bis 20 k > 20 kHz bis 50 k > 50 kHz bis 100 k	Hz :Hz :Hz :Hz	$0,65 \cdot 10^{-3} \cdot U + 0,2 \cdot 10^{-3} \cdot U + 0,1 \cdot 10^{-3} \cdot U + 0,25 \cdot 10^{-3} \cdot U + 0,7 \cdot 10^{-3} \cdot U + $	3,5 mV 1,7 mV 4,8 mV 10 mV	
	> 220 V	bis	1,1 kV	40 Hz bis < 50 > 50 Hz bis 1 k > 1 kHz bis 20 k	Ηz	$80 \cdot 10^{-6} \cdot U + 80 \cdot 10^{-6} \cdot U + 0,15 \cdot 10^{-3} \cdot U +$	25 mV	
Wechselspannung Quellen	0,1 V			20 Hz; 40 Hz; 1 kHz 10 kHz; 20 kHz 50 kHz 100 kHz		25 μV 25 μV 40 μV 50 μV		Substitutionsverfahren mit Kalibrator Fluke 5700A
	1 V			20 Hz 40 Hz; 1 kHz; 10 kHz 20 kHz 50 kHz; 70 kHz; 100 k 200 kHz 500 kHz 1 MHz		0,1 mV 70 μV 80 μV 0,1 mV 0,2 mV 1 mV 2 mV		
	4 V			1 kHz; 10 kHz		0,25 mV		
	6 V			1 kHz; 10 kHz		0,35 mV		
	8 V			1 kHz; 10 kHz		0,4 mV		
	10 V			20 Hz 40 Hz; 1 kHz 10 kHz; 20 kHz 50 kHz 70 kHz; 100 kHz 200 kHz 500 kHz		0,7 mV 0,5 mV 0,6 mV 1 mV 1,2 mV 3 mV 10 mV		
	13 V			1 MHz 1 kHz; 10 kHz		15 mV 0,5 mV		

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbe Messsp	reich /	nd Messmöglichl Messbedingungen/ Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung	15 V		1 kHz; 10 kHz	0,8 mV	
Quellen	18 V		1 kHz; 10 kHz	1 mV	
	20 V		1 kHz; 10 kHz	1,1 mV	
	100 V		20 Hz	10 mV	
			40 Hz; 1 kHz	7 mV	
			10 kHz; 20 kHz	7 mV	
			50 kHz	20 mV	
			70 kHz	30 mV	
			100 kHz	37 mV	
	700 V		50 Hz; 500 Hz; 1 kHz	80 mV	
	1000 V		50 Hz; 500 Hz; 1 kHz	0,1 V	
	1 kV bi	6 kV	50 Hz	2 \cdot 10 ⁻³ \cdot U	U = Messwert
					Kalibrieren mit
					Multimeter und Hochspannungsteiler
	0,1 V bis	o,22 V	20 Hz bis < 40 Hz	0,25 · 10 ⁻³ · <i>U</i> + 15 μV	U = Messwert
	0,1 0	0,22 4	40 Hz bis 20 kHz	$0,12 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	0 - Wiesswert
			> 20 kHz bis 50 kHz	$0.37 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
			>50 kHz bis 100 kHz	$0.9 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	
	> 0,22 V bis	2,2 V	20 Hz bis < 40 Hz	$0.2 \cdot 10^{-3} \cdot U + 40 \mu\text{V}$	
			40 Hz bis 20 kHz	$80 \cdot 10^{-6} \cdot U + 25 \mu\text{V}$	
			> 20 kHz bis 50 kHz	$0,15 \cdot 10^{-3} \cdot U + 30 \mu V$	
			>50 kHz bis 100 kHz	$0,3 \cdot 10^{-3} \cdot U$ + 90 μV	
			> 100 kHz bis 300 kHz	$0.5 \cdot 10^{-3} \cdot U + 0.17 \text{ mV}$	
			> 300 kHz bis 500 kHz	$1.3 \cdot 10^{-3} \cdot U + 0.45 \text{ mV}$	
			> 500 kHz bis 1 MHz	$2.5 \cdot 10^{-3} \cdot U + 1.2 \text{ mV}$	
	> 2,2 V bis	s 22 V	20 Hz bis < 40 Hz	$0.2 \cdot 10^{-3} \cdot U + 0.35 \text{ mV}$	
			40 Hz bis 20 kHz > 20 kHz bis 50 kHz	$0.1 \cdot 10^{-3} \cdot U + 0.15 \text{ mV}$ $0.15 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
			> 50 kHz bis 100 kHz	$0.3 \cdot 10^{-3} \cdot U + 0.45 \text{ mV}$	
			> 100 kHz bis 300 kHz	$0.6 \cdot 10^{-3} \cdot U + 2 \text{ mV}$	
			> 300 kHz bis 500 kHz	$1.6 \cdot 10^{-3} \cdot U + 5.5 \text{ mV}$	
			> 500 kHz bis 1 MHz	$3.2 \cdot 10^{-3} \cdot U + 10 \text{ mV}$	
	> 22 V bis	220 V	20 Hz bis < 40 Hz	$0.22 \cdot 10^{-3} \cdot U + 3.5 \text{ mV}$	
			40 Hz bis 20 kHz	$0.12 \cdot 10^{-3} \cdot U + 1.7 \text{ mV}$	
			> 20 kHz bis 50 kHz	$0.25 \cdot 10^{-3} \cdot U + 4.8 \mathrm{mV}$	
			> 50 kHz bis 100 kHz	$0.7 \cdot 10^{-3} \cdot U$ + 10 mV	
	> 220 V bis	1,1 kV	40 Hz bis < 50 Hz	$90\cdot 10^{\text{-6}}\cdot U$ + 25 mV	
			50 Hz bis 1 kHz	$90 \cdot 10^{-6} \cdot U$ + 25 mV	
			> 1 kHz bis 20 kHz	$0,15 \cdot 10^{-3} \cdot U + 20 \text{ mV}$	
Wechselstromstärke	0,2 mA		40 Hz; 100 Hz;	90 nA	Kalibrierung mit
Messgeräte			500 Hz; 1 kHz		Kalibrator Fluke
	0,5 mA		40 Hz; 100 Hz;	0,14 μΑ	5700A / 5725A
			500 Hz; 1 kHz	•	
	1 mA		40 Hz; 100 Hz;	0,24 μΑ	
			500 Hz; 1 kHz	·	

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		sbere ssspa	ich /	Messbedin Verfal	gungen /	Erweiter Messunsiche	te	Bemerkungen
Wechselstromstärke Messgeräte	2 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz		0,4 μΑ		Kalibrierung mit Kalibrator Fluke
	5 mA			40 Hz; 10 500 Hz;		1 μΑ		5700A / 5725A
	10 mA			40 Hz; 10 500 Hz;	•	2 μΑ		
	20 mA			40 Hz; 10 500 Hz;		3 μΑ		
	50 mA			40 Hz; 10 500 Hz;		10 μΑ		
	0,1 A			40 Hz; 10 500 Hz;		20 μΑ		
	0,2 A			40 Hz; 10 500 Hz;		40 μΑ		
	0,5 A			40 Hz; 10 500 Hz;	•	0,12 mA		
	1 A			40 Hz; 10 500 Hz;		0,22 mA		
	2 A			40 H 100 I 500 Hz;	Нz	0,4 mA 0,45 mA 0,5 mA 1 mA		
	3 A	3 A		40 Hz; 100 Hz; 500 Hz; 1 kHz				
	5 A			40 Hz; 10 500 Hz;	•	1,5 mA		
	10 A			40 Hz; 10 500 Hz;		3 mA		
	220 μA > 2,2 mA > 22 mA > 220 mA > 2,2 A	bis bis bis bis bis	2,2 mA 22 mA 220 mA 2,2 A 11 A	40 Hz bi	s 1 kHz	$0,15 \cdot 10^{-3} \cdot I + 0,15 \cdot 10^{-3} \cdot I + 0,37 \cdot 10^{-3} \cdot I + 0,75 \cdot 10^{-3} \cdot I + 0,44 \cdot 10^{-3} \cdot I +$	0,7 μA 6 μA 60 μA	I = Messwert Kalibrierung mit Kalibrator Fluke 5700A / 5725A
Wechselstromstärke Messgeräte Wandlerverfahren,	10 A > 16,5 A > 150 A		16,5 A 150 A 1025 A	45 Hz b	is 65 Hz	$5 \cdot 10^{-3} \cdot I + 5 \cdot 10^{-3} \cdot I + 5 \cdot 10^{-3} \cdot I +$	0,2 A	Kalibrieren mit Kalibrator Fluke Spule 5500A / Coil
Toroidwandler	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	> 65 Hz b	is 440 Hz	$11 \cdot 10^{-3} \cdot I + 11 \cdot 10^{-3} \cdot I + 11 \cdot 10^{-3} \cdot I + $	0,2 A	
Wechselstromstärke Messgeräte Wandlerverfahren	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	45 Hz b	is 65 Hz	$8 \cdot 10^{-3} \cdot I + 8 \cdot 10^{-3} \cdot I + 8 \cdot 10^{-3} \cdot I +$	0,3 A	
	10 A > 16,5 A > 150 A	bis bis bis	16,5 A 150 A 1025 A	> 65 Hz b	is 440 Hz	$14 \cdot 10^{-3} \cdot I + 14 \cdot 10^{-3} \cdot I + 14 \cdot 10^{-3} \cdot I + $	0,3 A	

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess		ich /	Messbedingungen / Verfahren	Erweiter Messunsich	te	Bemerkungen
Wechselstromstärke Quellen	0,2 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	90 nA		Substitutionsverfahren mit Kalibrator Fluke 5700A / 5725A
	0,5 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	0,14 μΑ		
	1 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	0,24 μΑ		
	2 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	0,4 μΑ		
	5 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	1 μΑ		
	10 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	2 μΑ		
	20 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	3 μΑ		
	50 mA			40 Hz; 100 Hz; 500 Hz; 1 kHz	10 μΑ		
	0,1 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	20 μΑ		
Wechselstromstärke Quellen	0,2 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	40 μΑ		Substitutionsverfahren mit Kalibrator
	0,5 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	0,12 mA		Fluke 5700A / 5725A
	1 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	0,22 mA		
	2 A			40 Hz 100 Hz 500 Hz; 1 kHz	0,4 mA 0,45 mA 0,5 mA		
	3 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	1 mA		
	5 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	1,5 mA		
	10 A			40 Hz; 100 Hz; 500 Hz; 1 kHz	3 mA		
	220 μA > 2,2 mA > 22 mA > 220 mA > 2,2 A	bis bis bis bis bis	2,2 mA 22 mA 220 mA 2,2 A 11 A	40 Hz bis 1 kHz	$0,15 \cdot 10^{-3} \cdot I + 0,15 \cdot 10^{-3} \cdot I + 0,37 \cdot 10^{-3} \cdot I + 0,75 \cdot 10^{-3} \cdot I + 0,44 \cdot 10^{-3} \cdot I +$	0,8 μA 7 μA 60 μA 0,35 mA	I = Messwert
	> 11 A	bis	20 A		0,31 · 10 ⁻³ · <i>I</i> +	0,5 mA	mit Shunt Y 5020

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess		eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselstromwirk- leistung Messgeräte	0,1 W 0,1 W 0,1 W 0,1 W 1 W 1 W 10 W	bis bis bis bis bis bis bis	9,15 W 33,5 W 91,5 W 336,5 W 917 W 2243 W 4589 W 20,9 kW	3,3 mA bis < 9 mA 9 mA bis < 33 mA 33 mA bis < 90 mA 90 mA bis < 0,33 mA 0,33 A bis < 0,9 A 0,9 A bis < 2,2 A 2,2 A bis < 4,5 A 4,5 A bis 20,5 A	$2 \cdot 10^{-3} \cdot P$ $1,7 \cdot 10^{-3} \cdot P$ $2 \cdot 10^{-3} \cdot P$ $1,7 \cdot 10^{-3} \cdot P$ $2 \cdot 10^{-3} \cdot P$ $1,8 \cdot 10^{-3} \cdot P$ $2 \cdot 10^{-3} \cdot P$ $1,8 \cdot 10^{-3} \cdot P$ $1,8 \cdot 10^{-3} \cdot P$	$P = Messwert$ Kalibrieren mit Fluke 5520A Frequenzen von 45 Hz bis 65 Hz $\cos \varphi = 1$
Kapazität Messgeräte	0,19 nF 0,4 nF 1,1 nF 3,3 nF 11 nF 33 nF 110 nF 0,33 μF 1,1 μF 3,3 μF	bis bis bis bis bis bis bis bis	0,39 nF 1,09 nF 3,29 nF 10,9 nF 32,9 nF 109,9 nF 329 nF 1,09 μF 3,29 μF	10 Hz bis 10 kHz 10 Hz bis 10 kHz 10 Hz bis 3 kHz 10 Hz bis 1 kHz 10 Hz bis 1 kHz 10 Hz bis 1 kHz 10 Hz bis 1 kHz 10 Hz bis 600 Hz 10 Hz bis 300 Hz 10 Hz bis 150 Hz	$40 \cdot 10^{-3} \cdot C$ $18 \cdot 10^{-3} \cdot C$ $12 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$ $5 \cdot 10^{-3} \cdot C$	C = Messwert mit Kalibrator Fluke 5520A
Gleichspannung Rechteckgeneratoren	0 V 0,12 V 1,2 V > 12 V > 120 V	bis bis bis bis bis	< 0,12 V < 1,2 V 12 V 120 V 1000 V	DC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U = Messwert Ermittlung mittels DMM HP 3458
Rechteckspannung Rechteckgeneratoren	0 V 0,12 V 1,2 V > 12 V > 120 V 0 V 0,12 V 1,2 V > 12 V	bis bis bis bis bis bis bis	< 0,12 V < 1,2 V 12 V 120 V 1000 V < 0,12 V < 1,2 V 12 V 120 V	10 Hz, 100 Hz, 1 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ermittlung mittels Sample-DMM; HP 3458
Impulsamplitude Impulsgeneratoren	5 mV	bis	50 V	50 Ω	85 · 10 ⁻³ · <i>U</i>	Ermittlung mittels Oszilloskop $t_{\rm r}$, $t_{\rm H} > 10 \cdot t_{\rm r}$ System $t_{\rm r} =$ Impulsanstiegszeit, $t_{\rm H} =$ Impulshalbwertbreite $t_{\rm r}$, System = Anstiegszeit des Messsystems
Anstiegszeit Impulsgeneratoren	825 ps	bis	100 ms		$60\cdot 10^{-3}\cdot t_{\rm r} + U_{\rm Tf}$	Die Systemanstiegszeit muss bei der Ermittlung von t _r mittels Oszilloskop berücksichtigt werden
Periodendauer Impulsgeneratoren	1 ns	bis	1 s		$3.5 \cdot 10^{-3} \cdot t + 0.2 \text{ ns}$	Ermittlung mittels Oszilloskop
	0,33 ns	bis	1 s		$1 \cdot 10^{-10} \cdot t + U_{\mathrm{Tf}}$	Ermittlung über 1/Frequenz $U_{ m Tf}$: Triggerunsicherheit

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			Messbedingungen / Verfahren	· · · · · · · · · · · · · · · · · · ·	Bemerkungen
Vertikalablenkung	6 mV	bis bis	200 V 3 V	1 MΩ (1 kHz) 50 Ω (1 kHz)	$5 \cdot 10^{-3} \cdot U$ $5 \cdot 10^{-3} \cdot U$	Die Messunsicherheit bezieht sich auf die Ge- nerierung der Kalibrier- signale inkl. einem Able- sefehler 0,1 % bei DSOs mit selbstschreibendem Raster
	6 mV	bis	200 V	1 MΩ (1 kHz)	6 · 10⁻³ · <i>U</i>	Die Messunsicherheit
	6 mV	bis	3 V	50 Ω (1 kHz)	$6\cdot 10^{-3}\cdot U$	bezieht sich auf die Ge- nerierung der Kalibrier- signale inkl. einem Able- sefehler von 0,3 % bei Bildröhren mit festem Raster
Horizontalablenkung	10 ns; 80 ns; 160 ns 400 ns bis 5 s 10 ns; 80 ns; 160 ns 400 ns bis 5 s				4 · 10 ⁻³ · t	Ablesefehler von 0,3 % bei Bildröhren mit festem Raster
					2,5 · 10 ⁻³ · <i>t</i>	Ablesefehler von 0,1 % bei DSOs mit selbst- schreibendem Raster
Bandbreite	100 kHz	bis	1 GHz	0,1 V bis 1 V	40 · 10 ⁻³ · <i>b</i>	b = Messwert
	> 1 GHz	bis	3 GHz	0,1 V bis 1 V	60 · 10 ⁻³ · <i>b</i>	Ermittlung des 3-dB- Punktes mittels Powersplitter und HF-Spannungsmessung
Anstiegszeit	360 ps	bis	10 ns	Spannungsbereich 20 mV bis 1 V $R_{\rm i}$ = 50 Ω	15 ps	t _r = Anstiegszeit Wiederholrate 10 Hz bis 1 MHz mit Tektronix-Pulskopf
Zeit und Frequenz						
Frequenz	1 Hz	bis	3 GHz	Digitale Frequenz- messung auf Zählbasis		f = Frequenz U_{Tf} : Triggerunsicherheit
	3 GHz	DIS	26,5 GHz		$2 \cdot \sqrt{(10^{-10} \cdot f)^2 + (1 \text{ Hz})^2 / 3}$	
Zeitintervall t	10 ms	bis	10 s		$2 \cdot \sqrt{(10^{-10} \cdot t)^2 + (1 \text{ ns})^2 / 3 + U_{\text{Tf}}^2}$	t = Zeitintervall U_{Tt} : Triggerunsicherheit

Neustadt

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Parallelendmaße * aus Stahl nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 3.1:2004 Messung der Abweichung des Mittenmaßes l_c vom Nennmaß l_n durch Unterschiedsmessung Messung der Abweichungen f_0 und f_u vom Mittenmaß	Für das Mittenmaß: $0.08 \ \mu m + 0.8 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_0 und f_u vom Mittenmaß: $0.07 \ \mu m$	In den Nennmaßen der Normale I = Länge des Maßes Messflächenqualität entsprechend den Festlegungen im QMH bzw. in den KA Für die kleinsten Messunsicherheiten sind Anschiebbarkeit und Anschubmerkmale beider Messflächen des Kalibriergegenstandes mit einer geeigneten Planglasplatte zu prüfen.
Parallelendmaße * aus Keramik nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm	1	Für das Mittenmaß: $0.1 \ \mu m + 0.9 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_0 und f_u vom Mittenmaß: $0.07 \ \mu m$	
Zylindrische Einstell- normale * Lehrringe Durchmesser	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006	0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Ringes
Rundheitsabweichung	3 mm bis	200 mm		0,1 μm	
Geradheits- und Paralleli- tätsabweichung	5 mm bis	300 mm		1 μm	Länge der Profillinien
Lehrdorne Durchmesser	1 mm bis	200 mm		0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Dornes
Rundheitsabweichung	1 mm bis	200 mm		0,1 μm	
Geradheits- und Paralleli- tätsabweichung	5 mm bis	500 mm		1 μm	Länge der Profillinien
Prüfzylinder			Trescal KA27 01.1/2021		
Rundheitsabweichung	60 mm bis	200 mm		0,1 μm	Durchmesser
Geradheits- und Parallelitätsabweichung	5 mm bis	300 mm		1 μm	Länge der Profillinien
Rechtwinkligkeitsabwei- chung zwischen Stirnfläche und Mantellinie				1 μm	

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa	eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Zylindrische Prüfdorne mit Kegel			Trescal KA32 01.1/2021		
Zylinder	axiale Lä	nge			
Durchmesser	bis	400 mm		0,6 μm	
Formabweichung				0,5 μm	
Kegel					
Formabweichung	Durchme	sser		0,5 μm	
Kegelwinkel	bis	50 mm		0,8"	
Koaxialitätsabweichung				1,8 μm	
Kugeln Durchmesser	5 mm bis	50 mm	Trescal KA67 01.1/2021	1 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = Kugeldurchmesser2-Punkt-Durchmesser
Rundheitsabweichung				0,1 μm	mit mechanischer Antastung
Rachenlehren *	10 mm bis	160 mm	VDI/VDE/DGQ 2618 Blatt 4.7:2005	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Fühlerlehren	0,01 mm bis	2 mm	Trescal KA29 01.1/2021	1 μm	
Grenznutenlehren, Grenzflachlehren Abstand an Messorten von planparallelen Flächen	1 mm bis	300 mm	Trescal KA66 01.1/2021	1 μm + 5 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = Distanz der Messflächen Abstandsmaß durch 2-Punkt-Messung
Polygonlehrdorne mit plan- parallelen Messflächen	1 mm bis	100 mm	Trescal KA66 01.1/2021	1 μm + 5 · 10 ⁻⁶ · <i>l</i>	
Gewindelehren * Flankendurchmesser an Außengewinden	1 mm bis Steigung ≥ 0,	200 mm 25 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · d	d = Flankendurchmesser
Flankendurchmesser an Innengewinden	3 mm bis Steigun ≥ 0,50 mm bi	-	VDI/VDE/DGQ 2618 Blatt 4.9:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · d	Einfacher Flanken- durchmesser (simple pitch diameter)
Haarlineale * Geradheitsabweichung	bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 5.2:2013	1 μm + 2,8 · 10 ⁻⁶ · <i>l</i>	l = Länge der Prüfschneide
Stahlwinkel 90° (Flach- und Anschlagwinkel) * Rechtwinkligkeits- abweichung	bis	800 mm	VDI/VDE/DGQ/DKD 2618 Blatt 7.1:2019	1 μm + 2,8 · 10 ⁻⁶ · <i>l</i> _z	l _z = Schenkellänge
Winkelmesser			Trescal KA28 01.1/2021		
Winkelabweichung	0° bis	360°		30"	bei Skw = 1'
,				2'	bei Skw = 5'
Geradheitsabweichung	bis	300 mm		1 μm	
Parallelitätsabweichung				1,5 μm	
Messschieber für Außen-,	0 mm bis	300 mm	VDI/VDE/DGQ 2618	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Innen- und Tiefenmaße *	> 300 mm bis	1000 mm	Blatt 9.1:2006	50 μm + 30 · 10 ⁻⁶ · <i>l</i>	

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messspa	eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Tiefenmessschieber *	0 mm bis > 300 mm bis	300 mm 1000 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i> 50 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Höhenmessschieber *	0 mm bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Messschieber mit prisma- tischen Messflächen	1 mm bis	105 mm	Trescal KA16-3 01.1/2021	30 μm + 30 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge300 mm = Endwertdes Messbereiches
	> 300 mm bis	500 mm		5 μm + 10 · 10 ⁻⁶ · <i>l</i>	500 mm = Endwert des Messbereiches
Einstellmaße für Bügelmessschrauben *	25 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 4.4:2009	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = Länge des Maßes
Bügelmessschrauben mit prismatischen Messflächen Form D10	1 mm bis	105 mm	Trescal KA16-8 01.1/2021	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser 105 mm = Endwert des Messbereiches
Bügelmessschrauben für Gewindemessungen Form D18 *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.2:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Feinzeigermessschrauben Form D13 *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.3:2002	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Einbaumessschrauben *	0 mm bis	50 mm	VDI/VDE/DGQ 2618 Blatt 10.4:2008	3 μm + 5 · 10 ⁻⁶ · <i>l</i>	Endwert des Messbereiches
Tiefenmessschrauben mit Verlängerungen *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.5:2010	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	Endwert des Messbereiches; Messelement i. d. R. 25 mm Messbereich
Innenmessschrauben mit Messschnäbeln	5 mm bis	200 mm	Trescal KA16-6 01.1/2021	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	Endwert des Messbereiches
Messschrauben für Innenquernuten	0 mm bis	100 mm	Trescal KA16-7 01.1/2021	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	Endwert des Messbereiches
Innenmessschrauben mit 2-Punkt-Berührung *	25 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.7:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	
Messuhren mit Ziffernanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa	ich /	Messbedingu Verfahre	ingen /	Erweiterte Messunsicherheit	Bemerkungen
Hebelmessgeräte für Außenmessungen * (Schnelltaster)	0 mm bis	200 mm	VDI/VDE/DGQ 261 Blatt 12.1:2005	18	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Hebelmessgeräte für Innenmessungen * (Schnelltaster)	2,5 mm bis	200 mm	VDI/VDE/DGQ 261 Blatt 13.1:2005	18	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Dickenmessgeräte	0 mm bis	200 mm	Trescal KA70 01.1,	/2021	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Gleichstrom und Niederfrequenz						
Gleichspannung Messgeräte	0 mV bis >0,22 V bis >2,2 V bis >11 V bis >22V bis >220 V bis	220 mV 2,2 V 11 V 22 V 220 V 1000 V			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U = Messwert
Gleichspannung Kalibratoren	1 mV bis >0,1 V bis >1 V bis >10 V bis >100 V bis	100 mV 1 V 10 V 100 V 1000 V			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Gleichstromstärke Messgeräte	20 µA bis > 0,22 mA bis > 2,2 mA bis > 22 mA bis > 0,22 A bis	220 μA 2,2 mA 22 mA 220 mA 2,1 A			36 · 10 ⁻⁶ · <i>I</i> + 10 nA 39 · 10 ⁻⁶ · <i>I</i> + 10 nA 41 · 10 ⁻⁶ · <i>I</i> + 50 nA 52 · 10 ⁻⁶ · <i>I</i> + 0,8 μA 93 · 10 ⁻⁶ · <i>I</i> + 14 μA	I = Messwert
Gleichstromstärke Kalibratoren	1 μA bis > 10 μA bis > 0,1 mA bis > 1 mA bis > 10 mA bis > 0,1 A bis	10 μA 100 μA 1 mA 10 mA 100 mA 1 A			$1 \cdot 10^{-6} \cdot I + 10 \text{ nA}$ $5 \cdot 10^{-6} \cdot I + 10 \text{ nA}$ $19 \cdot 10^{-6} \cdot I + 10 \text{ nA}$ $22 \cdot 10^{-6} \cdot I + 80 \text{ nA}$ $39 \cdot 10^{-6} \cdot I + 0.8 \mu\text{A}$ $0.13 \cdot 10^{-3} \cdot I + 13 \mu\text{A}$	
Wechselspannung Messgeräte	220 μV bis	2,2 mV	10 Hz bis > 20 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U = Messwert
	> 2,2 mV bis	22 mV	10 Hz bis > 20 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 22 mV bis	220 mV	10 Hz bis > 20 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{ccccc} 0.3 \cdot 10^{-3} \cdot U + & 14 \; \mu V \\ 0.1 \cdot 10^{-3} \cdot U + & 8 \; \mu V \\ 0.2 \cdot 10^{-3} \cdot U + & 8 \; \mu V \\ 0.5 \cdot 10^{-3} \cdot U + & 20 \; \mu V \end{array}$	

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspar	ich /	Messbeding Verfahr	ungen /	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung Messgeräte	>0,22 V bis	2,2 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0.3 \cdot 10^{-3} \cdot U + 46 \mu\text{V}$ $0.1 \cdot 10^{-3} \cdot U + 17 \mu\text{V}$ $0.1 \cdot 10^{-3} \cdot U + 9 \mu\text{V}$ $0.1 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$ $0.2 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	U = Messwert
	> 2,2 V bis	22 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 22 V bis	220 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
_	> 220 V bis	1100 V	50 Hz bis	1 kHz	$0.1 \cdot 10^{-3} \cdot U$ + 4.1 mV	
Wechselspannung Kalibratoren	1 mV bis	10 mV	10 Hz bis > 40 Hz bis > 1 kHz bis > 20 kHz bis > 50 kHz bis	40 Hz 1 kHz 20 kHz 50 kHz 100 kHz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 10 mV bis	100 mV	10 Hz bis > 40 Hz bis > 1 kHz bis > 20 kHz bis > 50 kHz bis	40 Hz 1 kHz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 0,1 V bis	10 V	10 Hz bis > 40 Hz bis > 1 kHz bis > 20 kHz bis > 50 kHz bis	40 Hz 1 kHz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 10 V bis	100 V	10 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	40 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 100 V bis	1000 V	10 Hz bis > 40 Hz bis > 1 kHz bis > 20 kHz bis > 50 kHz bis	40 Hz 1 kHz 20 kHz 50 kHz 100 kHz	$0.5 \cdot 10^{-3} \cdot U + 47 \text{ mV}$ $0.5 \cdot 10^{-3} \cdot U + 24 \text{ mV}$ $0.7 \cdot 10^{-3} \cdot U + 24 \text{ mV}$ $1.4 \cdot 10^{-3} \cdot U + 24 \text{ mV}$ $3.5 \cdot 10^{-3} \cdot U + 24 \text{ mV}$	
Wechselstromstärke Messgeräte	22 μA bis	220 μΑ	10 Hz bis > 20 Hz bis > 40 Hz bis > 1 kHz bis > 5 kHz bis	20 Hz 40 Hz 1 kHz 5 kHz 10 kHz	$0.3 \cdot 10^{-3} \cdot I + 30 \text{ nA}$ $0.2 \cdot 10^{-3} \cdot I + 20 \text{ nA}$ $0.2 \cdot 10^{-3} \cdot I + 20 \text{ nA}$ $0.4 \cdot 10^{-3} \cdot I + 20 \text{ nA}$ $1.3 \cdot 10^{-3} \cdot I + 80 \text{ nA}$	I = Messwert

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselstromstärke Messgeräte	> 0,22 mA bis 2,2 mA	10 Hz bis 20 Hz > 20 Hz bis 40 Hz > 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	$0.3 \cdot 10^{-3} \cdot I + 0.1 \mu A$ $0.2 \cdot 10^{-3} \cdot I + 0.1 \mu A$ $0.2 \cdot 10^{-3} \cdot I + 0.1 \mu A$ $0.2 \cdot 10^{-3} \cdot I + 0.2 \mu A$ $1.3 \cdot 10^{-3} \cdot I + 0.8 \mu A$	I = Messwert
	> 2,2 mA bis 22 mA	10 Hz bis 20 Hz > 20 Hz bis 40 Hz > 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	$0.4 \cdot 10^{-3} \cdot I + 0.1 \mu A$ $0.2 \cdot 10^{-3} \cdot I + 0.4 \mu A$ $0.2 \cdot 10^{-3} \cdot I + 0.4 \mu A$ $0.2 \cdot 10^{-3} \cdot I + 0.7 \mu A$ $1.3 \cdot 10^{-3} \cdot I + 5.8 \mu A$	
	> 22 mA bis 220 mA	10 Hz bis 20 Hz > 20 Hz bis 40 Hz > 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	$0.3 \cdot 10^{-3} \cdot I + 4.6 \mu A$ $0.3 \cdot 10^{-3} \cdot I + 4.1 \mu A$ $0.3 \cdot 10^{-3} \cdot I + 2.9 \mu A$ $0.3 \cdot 10^{-3} \cdot I + 4.1 \mu A$ $1.3 \cdot 10^{-3} \cdot I + 12 \mu A$	
	>0,22 A bis 2,2 A	20 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	0,3 · 10 ⁻³ · <i>I</i> + 41 μA 0,5 · 10 ⁻³ · <i>I</i> + 93 μA 8,1 · 10 ⁻³ · <i>I</i> + 19 μA	
Wechselstromstärke Kalibratoren	10 μA bis 100 μA	10 Hz bis 20 Hz > 20 Hz bis 45 Hz > 45 Hz bis 1 kHz	4,6 · 10 ⁻³ · <i>I</i> + 0,2 μA 1,7 · 10 ⁻³ · <i>I</i> + 0,2 μA 0,7 · 10 ⁻³ · <i>I</i> + 0,2 μA	
	> 0,1 mA bis 100 mA	10 Hz bis 20 Hz > 20 Hz bis 45 Hz > 45 Hz bis 100 Hz > 100 Hz bis 5 kHz	$4,6 \cdot 10^{-3} \cdot I + 23 \mu A$ $1,7 \cdot 10^{-3} \cdot I + 23 \mu A$ $0,7 \cdot 10^{-3} \cdot I + 23 \mu A$ $1,7 \cdot 10^{-3} \cdot I + 23 \mu A$	
	>0,1 A bis 1 A	10 Hz bis 20 Hz > 20 Hz bis 45 Hz > 45 Hz bis 100 Hz > 100 Hz bis 5 kHz	$4,6 \cdot 10^{-3} \cdot I + 0,2 \text{ mA}$ $1,9 \cdot 10^{-3} \cdot I + 0,2 \text{ mA}$ $0,9 \cdot 10^{-3} \cdot I + 0,2 \text{ mA}$ $1,2 \cdot 10^{-3} \cdot I + 0,2 \text{ mA}$	
Gleichstromwiderstand Messgeräte	$\begin{array}{c} 1 \ \Omega; \ 1,9 \ \Omega \\ 10 \ \Omega; \ 19 \ \Omega \\ 100 \ \Omega; \ 190 \ \Omega \\ 1 \ k\Omega; \ 1,9 \ k\Omega \\ 10 \ k\Omega; \ 19 \ k\Omega \\ 100 \ k\Omega; \ 190 \ k\Omega \\ 1 \ M\Omega \\ 1,9 \ M\Omega \\ 10 \ M\Omega \\ 19 \ M\Omega \\ 100 \ M\Omega \end{array}$		$\begin{array}{c} 0,1 \cdot 10^{-3} \cdot R \\ 27 \cdot 10^{-6} \cdot R \\ 12 \cdot 10^{-6} \cdot R \\ 10 \cdot 10^{-6} \cdot R \\ 10 \cdot 10^{-6} \cdot R \\ 14 \cdot 10^{-6} \cdot R \\ 24 \cdot 10^{-6} \cdot R \\ 26 \cdot 10^{-6} \cdot R \\ 47 \cdot 10^{-6} \cdot R \\ 58 \cdot 10^{-6} \cdot R \\ 0,1 \cdot 10^{-3} \cdot R \end{array}$	R = Messwert
Gleichstromwiderstand Widerstände	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Vor-Ort-Kalibrierung - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messspa		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge					
Messschieber für Außen-, Innen- und Tiefenmaße *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches
Tiefenmessschieber *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	
Messuhren mit Ziffernanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen
horizontale	0 mm bis	300 mm	Trescal KA06-1 01.1/2021	0,2 μm + 2,5 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Längenmessgeräte	mit max. 300 mm Mess- bereich des Messele- ments, Anwendungs- bereich bis 1000 mm				keine Kalibrierung zusätzlicher Achsen (z-Achse)
vertikale Längenmessgeräte	0 mm bis	1000 mm	Trescal KA06-2 01.1/2021	1,7 μm + 1,6 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Rechtwinkligkeits- abweichung	bis	30 μm		2,5 μm + 1,2 \cdot 10 ⁻⁶ \cdot $l_{\rm z}$	$l_{\rm z}$ = Führungslänge bis 800 mm
Messuhren- und Feinzeigerprüfgeräte	bis	100 mm	Trescal KA02 01.1/2021	0,4 μm + 2 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge mit inkrementalem Feintaster IKF 100
ebene Flächen z. B. Hartgesteinslineale Geradheitsabweichung	bis	50 μm	Trescal KA58 01.1/2021 bis 10 m Kantenlänge	1 μm + 0,5 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = Kantenlänge der Maßverkörperung
Horizontale Ebenheitsver- körperung, z.B. Prüfplatten nach DIN 876:1984 Ebenheitsabweichung	bis	50 μm	Trescal KA58 01.1/2021 bis 10 m Kantenlänge	1 μm + 0,5 · 10 ⁻⁶ · <i>l</i>	

Mobiles Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Zylindrische Einstell- normale * Lehrringe Durchmesser	10 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006 Option 3 und 4	1,0 μm + 14 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Ringes
Lehrdorne Durchmesser	3 mm bis	100 mm		1,0 μm + 14 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Dornes
Messschieber für Außen-, Innen- und Tiefenmaße *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches
Tiefenmessschieber *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	
Messuhren mit Ziffernanzeige *	bis :	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen

Esslingen

Permanentes Laboratorium - Esslingen

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich Messspann	-	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Zylindrische Einstell- normale * Lehrdorne Durchmesser	1 mm bis 2	00 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006, Option 3 und 4	0,8 μm + 2 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Lehrringe * Durchmesser	10 mm bis 2	00 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006, Option 3 und 4	0,8 μm + 2 · 10 ⁻⁶ · <i>d</i>	
Prüfstifte, Gewindeprüfstifte * Durchmesser	1 mm bis	20 mm	VDI/VDE/DGQ 2618 Blatt 4.2:2007, Option 3	0,8 μm + 2 · 10 ⁻⁶ · <i>d</i>	
Gewindelehren * Flankendurchmesser an Außengewinden	1 mm bis 2 Steigung 0,25 mm bis	00 mm 6 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006, Option 1	3 μ m + 10 \cdot 10 ⁻⁶ \cdot d	d = Flanken- durchmesser Einfacher Flanken- durchmesser
Gewindelehren * Flankendurchmesser an Innengewinden	3 mm bis 2 Steigung 0,5 mm bis	00 mm 6 mm	VDI/VDE/DGQ 2618 Blatt 4.9:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	(simple pitch diameter)
Messschieber für Außen-, Innen- und Tiefenmaße *	0 mm bis 3	00 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μ m + 30 · 10 ⁻⁶ · l 50 μ m + 30 · 10 ⁻⁶ · l	l = gemessene Länge
Tiefenmessschieber *	0 mm bis 3 > 300 mm bis 10	00 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μ m + 30 · 10 ⁻⁶ · l 50 μ m + 30 · 10 ⁻⁶ · l	
Höhenmessschieber *	0 mm bis 10	00 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Bügelmessschrauben *	0 mm bis 3	00 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereichs
Innenmessschrauben mit 2-Punkt-Berührung *	25 mm bis 3	00 mm	VDI/VDE/DGQ 2618 Blatt 10.7:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis 2	00 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Messuhren mit Skalenanzeige *	bis 1	00 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Läng€ in senkrechter
Messuhren mit Ziffernanzeige *	bis 1	00 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	Lage gemessen
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,8 μm	
Fühlhebelmessgeräte *	bis 1	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	

Permanentes Laboratorium - Esslingen

Kalibrier- und Messmöglichkeiten (CMC)

			•	•	
Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Hebelmessgeräte für Außenmessungen * (Schnelltaster)	0 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 12.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Hebelmessgeräte für Innenmessungen * (Schnelltaster)	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 13.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Gleichstrom und Niederfrequenz					
Spannungsverhältnis	0 mV/V bis	2 mV/V	Gleichspannung, 225 Hz; 4800 Hz	0,33 · 10 ⁻³ mV/V	

Vor-Ort-Kalibrierung - Esslingen

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichstrom und Niederfrequenz				
Spannungsverhältnis	0 mV/V bis 2 mV/V	Gleichspannung, 225 Hz; 4800 Hz	0,33 · 10 ⁻³ mV/V	

 Gültig ab:
 10.01.2024

 Ausstellungsdatum:
 10.01.2024

 Seite 39 von 70

Parchim

Permanentes Laboratorium - Parchim

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa	eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Parallelendmaße * aus Stahl nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 3.1:2004 In den Nennmaßen der Normale Messung der Abweichung des Mittenmaßes Ic vom Nennmaß In durch Unterschiedsmessung Messung der Abweichungen fo und fu vom Mittenmaß durch 5-Punkte-Unterschiedsmessung	Für das Mittenmaß: $0.08 \ \mu m + 0.8 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_0 und f_u vom Mittenmaß: $0.08 \ \mu m$	l = Länge des Maßes Messflächenqualität ent- sprechend den Festle- gungen im QMH bzw. in den KA Für die kleinsten Mess- unsicherheiten sind Anschiebbarkeit und Anschubmerkmale beider Messflächen des Kalibriergegenstandes mit einer geeigneten Planglasplatte zu prüfen.
Zylindrische Einstellnormale * Lehrringe Durchmesser	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006,	0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Ringes
Lehrdorne Durchmesser	3 mm bis	200 mm	Option 3 und 4	0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Dornes
Gewindelehren * Flankendurchmesser an Außengewinden	1 mm bis Steigun 0,25 mm bis	200 mm g 6 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = FlankendurchmesserEinfacherFlankendurchmesser
Flankendurchmesser an Innengewinden	3 mm bis Steigun 0,5 mm bis	200 mm g 6 mm	VDI/VDE/DGQ 2618 Blatt 4.9:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	(simple pitch diameter)
Einstellmaße für Bügelmessschrauben *	25 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 4.4:2009	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = Länge des Maßes
Rachenlehren *	10 mm bis	160 mm	VDI/VDE/DGQ 2618 Blatt 4.7:2005	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	_
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	In senkrechter Lage gemessen
Messuhren mit Ziffernanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	
Messschieber für Außen-, Innen- und Tiefenmaße *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Tiefenmessschieber *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge

Permanentes Laboratorium - Parchim

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Hebelmessgeräte für Außenmessungen * (Schnelltaster)	0 mm bis 200 mm	VDI/VDE/DGQ 2618 Blatt 12.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = Länge des Einstellmaßes
Hebelmessgeräte für Innenmessungen * (Schnelltaster)	2,5 mm bis 200 mm	VDI/VDE/DGQ 2618 Blatt 13.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = Länge des Einstellmaßes
Bügelmessschrauben *	0 mm bis 300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge 300 mm = Endwert des Messbereiches
Innenmessschrauben mit 2-Punkt-Berührung *	25 mm bis 300 mm	VDI/VDE/DGQ 2618 Blatt 10.7:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis 300 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser 300 mm = Endwert des Messbereichs

Berlin / Mahlow

Permanentes Laboratorium – Berlin / Mahlow

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Parallelendmaße * aus Stahl nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 3.1:2004 In den Nennmaßen der Normale Messung der Abweichung des Mittenmaßes l_c vom Nennmaß l_n durch Unterschiedsmessung Messung der Abweichungen f_o und f_u vom Mittenmaß durch 5-Punkte- Unterschiedsmessung	Für das Mittenmaß: $0.08~\mu\text{m} + 0.8 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_0 und f_0 vom Mittenmaß: $0.08~\mu\text{m}$	l = Länge des Maßes Messflächenqualität entsprechend der Festlegungen in QMH bzw. in den KA Für die kleinsten Mess- unsicherheiten sind An- schiebbarkeit und An- schubmerkmale beider Messflächen des Kali- briergegenstandes mit einer geeigneten Plan- glasplatte zu prüfen
Zylindrische Einstellnormale * Lehrringe Durchmesser Lehrdorne	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006 Option 3 und 4	0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser des Ringesd = gemessener Durch-
Durchmesser	3 mm bis	200 mm		0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	messer des Dornes
Gewindelehren * Flankendurchmesser an Außengewinden	1 mm bis Steigung 0,25 mm bis	200 mm 3 6 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = Flankendurchmesser Einfacher Flankendurchmesser
Flankendurchmesser an Innengewinden	3 mm bis Steigung 0,5 mm bis	200 mm 3 6 mm	VDI/VDE/DGQ 2618 Blatt 4.9:2006, Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	(simple pitch diameter)
Einstellmaße für Bügelmessschrauben *	25 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 4.4:2009	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = Länge des Maßes
Rachenlehren *	10 mm bis	160 mm	VDI/VDE/DGQ 2618 Blatt 4.7:2005	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	-
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen
Messuhren mit Ziffernanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	
Messschieber für Außen-,	0 mm bis	300 mm	VDI/VDE/DGQ 2618	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Innen- und Tiefenmaße *	> 300 mm bis	1000 mm	Blatt 9.1:2006	50 μm + 30 · 10 ⁻⁶ · <i>l</i>	_
Tiefenmessschieber *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	

Permanentes Laboratorium – Berlin / Mahlow

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messspa	•	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Höhenmessschieber *	0 mm bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Hebelmessgeräte für Außenmessungen * (Schnelltaster)	0 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 12.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Hebelmessgeräte für Innenmessungen * (Schnelltaster)	2,5 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 13.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches
	> 300 mm bis	500 mm		5 μm + 10 · 10 ⁻⁶ · <i>l</i>	500 mm = Endwert des Messbereiches
Innenmessschrauben mit 2-Punkt-Berührung *	25 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.7:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer 200 mm = Endwert des Messbereiches
Flachlineale * Ebenheits- und Parallelitätsabweichung	bis	500 mm	VDI/VDE/DGQ 2618 Blatt 5.1:2013	7 μm + 5 · 10 ⁻⁶ · l_z	l_z = Länge der Form- bzw. Maßverkörperung
Stahlwinkel * Rechtwinkligkeits- abweichung	bis	500 mm	VDI/VDE/DGQ/DKD 2618 Blatt 7.1:2019	8 μm + 5 · 10 ⁻⁶ · l_z	l_z = Schenkellänge
Ebenheitsabweichung				7 μm + 5 · 10 ⁻⁶ · l_z	

Donauwörth

Permanentes Laboratorium - Donauwörth

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Messbereic		Messbe	dingungen /	Erweite	rte	Bemerkungen
Kalibriergegenstand	Messspanr	ne	Ve	rfahren	Messunsich	nerheit	
Gleichstrom und Niederfrequenz							
Gleichspannung Messgeräte	1 mV bis > 0,22 V bis > 2,2 V bis > 22 V bis > 220 V bis	0,22 V 2,2 V 22 V 220 V 1000 V			$15 \cdot 10^{-6} \cdot U +$ $15 \cdot 10^{-6} \cdot U +$ $15 \cdot 10^{-6} \cdot U +$ $15 \cdot 10^{-6} \cdot U +$ $15 \cdot 10^{-6} \cdot U +$	3 μV 25 μV 0,25 mV	U = Messwert
Gleichspannung Quellen	1 mV bis > 1 V bis > 10 V bis > 100 V bis	1 V 10 V 100 V 1000 V			30 · 10 ⁻⁶ · <i>U</i> + 30 · 10 ⁻⁶ · <i>U</i> + 30 · 10 ⁻⁶ · <i>U</i> + 30 · 10 ⁻⁶ · <i>U</i> +	2 μV 50 μV	
Gleichstromstärke Messgeräte	1 μA bis > 2,2 mA bis > 22 mA bis > 220 mA bis	2,2 mA 22 mA 220 mA 2,2 A			$80 \cdot 10^{-6} \cdot I + 80 \cdot 10^{-6} \cdot I + 90 \cdot 10^{-6} \cdot I + 0,15 \cdot 10^{-3} \cdot I +$	0,3 μA 5 μA	I = Messwert
Gleichstromstärke Quellen	1 μA bis > 1,2 mA bis > 12 mA bis > 120 mA bis	1,2 mA 12 mA 120 mA 1 A			$30 \cdot 10^{-6} \cdot I + 30 \cdot 10^{-6} \cdot I + 50 \cdot 10^{-6} \cdot I + 50 \cdot 10^{-6} \cdot I +$	0,3 μA 5 μA	
Gleichstromwiderstand Messgeräte	1 Ω 1,9 Ω 10 Ω 19 Ω 100 Ω; 190 Ω; 1,9 kΩ; 10 kΩ; 100 kΩ; 190 kΩ; 1,9 MΩ 10 MΩ 19 MΩ; 100 M	19 kΩ 1 MΩ			$0,2 \cdot 10^{-3} \cdot R$ $0,15 \cdot 10^{-3} \cdot R$ $50 \cdot 10^{-6} \cdot R$ $75 \cdot 10^{-6} \cdot R$ $50 \cdot 10^{-6} \cdot R$ $50 \cdot 10^{-6} \cdot R$ $50 \cdot 10^{-6} \cdot R$ $0,2 \cdot 10^{-3} \cdot R$ $0,1 \cdot 10^{-3} \cdot R$ $0,7 \cdot 10^{-3} \cdot R$		R = Messwert
Gleichstromwiderstand Widerstände	1 Ω bis > 12 Ω bis > 120 Ω bis > 1,2 k Ω bis > 1,2 k Ω bis > 120 k Ω bis > 1,2 M Ω bis > 1,2 M Ω bis > 12 M Ω bis	12 Ω 120 Ω 1,2 kΩ 12 kΩ 120 kΩ 1,2 MΩ 12 MΩ 120 MΩ			$15 \cdot 10^{-6} \cdot R +$ $15 \cdot 10^{-6} \cdot R +$ $15 \cdot 10^{-6} \cdot R +$ $15 \cdot 10^{-6} \cdot R +$ $15 \cdot 10^{-6} \cdot R +$ $15 \cdot 10^{-6} \cdot R +$ $15 \cdot 10^{-6} \cdot R +$ $30 \cdot 10^{-6} \cdot R +$ $0,3 \cdot 10^{-3} \cdot R +$	$2,5 \text{ m}\Omega$ $15 \text{ m}\Omega$ $0,1 \Omega$ $1,5 \Omega$ 20Ω $1 \text{ k}\Omega$	
Wechselstromstärke Messgeräte	220 µA bis > 2,2 mA bis > 22 mA bis > 220 mA bis	2,2 mA 22 mA 220 mA 2,2 A	40 Hz	bis 1 kHz	$0,2 \cdot 10^{-3} \cdot I + 0,2 \cdot 10^{-3} \cdot I + 0,5 \cdot 10^{-3} \cdot I + 1,2 \cdot 10^{-3} \cdot I + 1$	1,5 μA 50 μA	I = Messwert
Wechselstromstärke Quellen	1 μA bis > 1,2 mA bis > 12 mA bis > 120 mA bis	1,2 mA 12 mA 120 mA 1 A	45 Hz	bis 1 kHz	$0.5 \cdot 10^{-3} \cdot I + 0.5 \cdot 10^{-3} \cdot I + 0.5 \cdot 10^{-3} \cdot I + 1 \cdot 10^{-3} \cdot I + $	5 μA 50 μA	

Permanentes Laboratorium - Donauwörth

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung Messgeräte	0,1 V bis 0,22 V	20 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz	$0.4 \cdot 10^{-3} \cdot U + 30 \mu\text{V}$	U = Messwert
	> 0,22 V bis 2,2 V	20 Hz bis 40 Hz > 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 500 kHz > 500 kHz bis 1 MHz	0,6 \cdot 10 ⁻³ \cdot U + 0,6 mV 1,2 \cdot 10 ⁻³ \cdot U + 2 mV	
	> 2,2 V bis 22 V	20 Hz bis 40 Hz > 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 500 kHz > 500 kHz bis 1 MHz	$\begin{array}{c} 0.15 \cdot 10^{-3} \cdot U + & 0.5 \text{ mV} \\ 0.2 \cdot 10^{-3} \cdot U + & 1 \text{ mV} \\ 0.35 \cdot 10^{-3} \cdot U + & 1.5 \text{ mV} \\ 0.75 \cdot 10^{-3} \cdot U + & 6 \text{ mV} \\ 1.5 \cdot 10^{-3} \cdot U + & 20 \text{ mV} \end{array}$	
	> 22 V bis 220 V	> 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz	0,25 \cdot 10 ⁻³ \cdot U + 25 mV 1 \cdot 10 ⁻³ \cdot U + 20 mV	
Wechselspannung Quellen	> 220 V bis 1100 V 0,1 V bis 0,12 V		$0.1 \cdot 10^{-3} \cdot U + 50 \mu\text{V}$ $0.2 \cdot 10^{-3} \cdot U + 50 \mu\text{V}$	
	> 0,12 V bis 1,2 V	20 Hz bis 40 Hz > 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 1 MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	>1,2 V bis 12 V	20 Hz bis 40 Hz > 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz > 100 kHz bis 300 kHz > 300 kHz bis 1 MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 12 V bis 120 V	20 Hz bis 40 Hz > 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz	0,25 \cdot 10 ⁻³ \cdot U + 10 mV 0,4 \cdot 10 ⁻³ \cdot U + 10 mV	
	> 120 V bis 700 V	40 Hz bis 1 kHz	$0.5 \cdot 10^{-3} \cdot U + 0.2 \text{ V}$	

Halver

Permanentes Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Zylindrische Einstellnormale * Lehrringe Durchmesser	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006	0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Lehrdorne Durchmesser	3 mm bis	200 mm	Option 3 und 4	0,8 μm + 5 · 10 ⁻⁶ · <i>d</i>	
Prüfstifte, Gewindeprüfstifte Durchmesser	0,1 mm bis	20 mm	VDI/VDE/DGQ 2618 Blatt 4.2:2007 Option 3	1 μm + 2 · 10 ⁻⁶ · <i>d</i>	
Gewindelehren * Flankendurchmesser an Außengewinden	1 mm bis Steigun	200 mm g 6 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006 Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = Flankendurch- messer Einfacher Flanken- durchmesser
Flankendurchmesser an Innengewinden	3 mm bis Steigun	-	VDI/VDE/DGQ 2618 Blatt 4.9:2006 Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	(simple pitch diameter)
Einstellmaße für Bügelmessschrauben *	0,5 mm bis 25 mm bis	6 mm	VDI/VDE/DGQ 2618 Blatt 4.4:2009	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = Länge des Maßes
Rachenlehren *	10 mm bis	160 mm	VDI/VDE/DGQ 2618 Blatt 4.7:2005	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Messschieber für Außen-, Innen- und Tiefenmaße *	0 mm bis	500 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Tiefenmessschieber *	0 mm bis	500 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Höhenmessschieber *	0 mm bis	500 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches
Feinzeigermessschrauben Form D 13 *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.3:2002	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Tiefenmessschrauben mit Verlängerung *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.5:2010	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	Messelement i. d. R. 25 mm Messbereich
Innenmessschrauben mit 2-Punkt-Berührung *	25 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.7:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis	150 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Messuhren mit Ziffernanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	

Permanentes Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbero Messspa		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,9 μm	
Hebelmessgeräte für Außenmessungen * (Schnelltaster)	0 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 12.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Hebelmessgeräte für Innenmessungen * (Schnelltaster)	2,5 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 13.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Gleichstrom- und Niederfrequenz					
Gleichspannung Messgeräte	100 mV bis 0,33 V bis 3,3 V bis 33 V bis 330 V bis	< 0,33 V < 3,3 V < 33 V < 330 V 1000 V		$24 \cdot 10^{-6} \cdot U + 1,1 \mu\text{V}$ $14 \cdot 10^{-6} \cdot U + 2,2 \mu\text{V}$ $16 \cdot 10^{-6} \cdot U + 21 \mu\text{V}$ $22 \cdot 10^{-6} \cdot U + 0,16 \text{mV}$ $22 \cdot 10^{-6} \cdot U + 1,6 \text{mV}$	U = jeweiliger Messwert
Gleichspannung Quellen	0,1 V bis 1 V bis 10 V bis 100 V bis	< 1 V < 10 V < 100 V 1000 V		$27 \cdot 10^{-6} \cdot U + 0,3 \ \mu V$ $13 \cdot 10^{-6} \cdot U + 0,2 \ \mu V$ $16 \cdot 10^{-6} \cdot U + 0,4 \ \mu V$ $17 \cdot 10^{-6} \cdot U + 0,8 \ \mu V$	
Gleichstromstärke Messgeräte	100 μA bis 330 μA bis 3,3 mA bis 33 mA bis 0,33 A bis 1,1 A bis 3 A bis 11 A bis	< 330 µA < 3,3 mA < 33 mA < 0,33 A < 1,1 A < 3 A < 11 A 20 A		0,19 · 10^{-3} · I + 0,1 μ A 0,12 · 10^{-3} · I + 0,1 μ A 0,12 · 10^{-3} · I + 0,3 μ A 0,12 · 10^{-3} · I + 2,8 μ A 0,24 · 10^{-3} · I + 44 μ A 0,44 · 10^{-3} · I + 45 μ A 0,58 · 10^{-3} · I + 0,57 μ A 1,2 · 10^{-3} · I + 0,86 μ A	I = jeweiliger Messwert
Gleichstromstärke Quellen	0,1 mA bis 1 mA bis 10 mA bis 100 mA bis	< 1 mA < 10 mA < 100 mA 1 A		$58 \cdot 10^{-6} \cdot I + 2,3 \mu A$ $60 \cdot 10^{-6} \cdot I + 2,3 \mu A$ $0,12 \cdot 10^{-3} \cdot I + 5,7 \mu A$ $0,22 \cdot 10^{-3} \cdot I + 9,9 \mu A$	
Gleichstromwiderstand Messgeräte	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 11 Ω < 33 Ω < 110 Ω < 330 Ω < 1,1 kΩ < 3,3 kΩ < 11 kΩ < 33 kΩ < 110 kΩ < 330 kΩ < 1,1 MΩ < 3,3 MΩ < 1,1 MΩ < 3,3 MΩ		$50 \cdot 10^{-6} \cdot R + 2.7 \mu\Omega$ $38 \cdot 10^{-6} \cdot R + 0.1 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 1.9 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 0.6 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 19 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 5.9 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 5.9 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 5.9 \mu\Omega$ $34 \cdot 10^{-6} \cdot R + 1.9 m\Omega$ $34 \cdot 10^{-6} \cdot R + 5.51 m\Omega$ $40 \cdot 10^{-6} \cdot R + 1.51 m\Omega$ $40 \cdot 10^{-6} \cdot R + 1.51 m\Omega$ $50 \cdot 10^{-6} \cdot R + 1.51 m\Omega$ $50 \cdot 10^{-6} \cdot R + 0.51 m\Omega$ $50 \cdot 10^{-6} \cdot R + 0.51 m\Omega$	R = jeweiliger Messwert

Permanentes Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messsp	eich /	Messb	_	gungen /	Erweiterte Messunsicherheit	Bemerkungen
Gleichstromwiderstand Messgeräte	$\begin{array}{ccc} & 1 \ \Omega & \text{bis} \\ & 10 \ \Omega & \text{bis} \\ & 100 \ \Omega & \text{bis} \\ & 10 \ k\Omega & \text{bis} \\ & 10 \ k\Omega & \text{bis} \\ & 100 \ k\Omega & \text{bis} \end{array}$	$<10~\Omega$ $<100~\Omega$ $<1~k\Omega$ $<10~k\Omega$ $<100~k\Omega$ $<100~k\Omega$ $<1~M\Omega$				$40 \cdot 10^{-6} \cdot R + 1,2 \mu\Omega$ $25 \cdot 10^{-6} \cdot R + 0,3 \mu\Omega$ $19 \cdot 10^{-6} \cdot R + 0,4 \mu\Omega$ $16 \cdot 10^{-6} \cdot R + 0,9 \mu\Omega$ $18 \cdot 10^{-6} \cdot R + 4,2 \mu\Omega$ $28 \cdot 10^{-6} \cdot R + 26 \mu\Omega$	R = jeweiliger Messwert
Wechselspannung Messgeräte	33 mV bis	< 330 mV	10 Hz 45 Hz 10 kHz 20 kHz 50 kHz 100 kHz	bis bis bis bis bis	< 20 kHz < 50 kHz	$0,17 \cdot 10^{-3} \cdot U + 9,0 \text{ µV}$ $0,19 \cdot 10^{-3} \cdot U + 9,1 \text{ µV}$ $0,41 \cdot 10^{-3} \cdot U + 9,1 \text{ µV}$ $0,69 \cdot 10^{-3} \cdot U + 36 \text{ µV}$	<i>U</i> = jeweiliger Messwert
	0,33 V bis	< 3,3 V	10 Hz 45 Hz 10 kHz 20 kHz 50 kHz 100 kHz	bis bis bis bis bis	< 20 kHz < 50 kHz	$\begin{array}{c} 0.37 \cdot 10^{-3} \cdot U + 55 \; \mu \text{V} \\ 0.17 \cdot 10^{-3} \cdot U + 69 \; \mu \text{V} \\ 0.22 \cdot 10^{-3} \cdot U + 69 \; \mu \text{V} \\ 0.35 \cdot 10^{-3} \cdot U + 57 \; \mu \text{V} \\ 0.81 \cdot 10^{-3} \cdot U + 0.14 \; \text{mV} \\ 2.5 \cdot 10^{-3} \cdot U + 0.60 \; \text{mV} \end{array}$	
	3,3 V bis	< 33 V	10 Hz 45 Hz 10 kHz 20 kHz 50 kHz	bis bis bis bis		$0.27 \cdot 10^{-3} \cdot U + 0.69 \text{ mV}$	
	33 V bis	< 330 V	45 Hz 1 kHz 10 kHz 20 kHz 50 kHz	bis bis bis bis bis	< 20 kHz	$\begin{array}{l} \text{0,23} \cdot \text{10}^{\text{-3}} \cdot U + \text{6,9 mV} \\ \text{0,29} \cdot \text{10}^{\text{-3}} \cdot U + \text{6,9 mV} \\ \text{0,36} \cdot \text{10}^{\text{-3}} \cdot U + \text{6,7 mV} \end{array}$	
	330 V bis	< 1000 V	45 Hz 1 kHz 5 kHz	bis bis bis	< 5 kHz	$0.35 \cdot 10^{-3} \cdot U + 12 \text{ mV} \\ 0.29 \cdot 10^{-3} \cdot U + 12 \text{ mV} \\ 0.35 \cdot 10^{-3} \cdot U + 12 \text{ mV}$	
Wechselspannung Quellen	0,1 V bis 1 V bis 10 V bis 100 V bis	< 1 V < 10 V < 100 V 1000 V	45 Hz	bis	1 kHz	$\begin{array}{c} 0.30 \cdot 10^{-3} \cdot U + 79 \text{ mV} \\ 0.25 \cdot 10^{-3} \cdot U + 53 \text{ mV} \\ 0.26 \cdot 10^{-3} \cdot U + 54 \text{ mV} \\ 0.30 \cdot 10^{-3} \cdot U + 99 \text{ mV} \end{array}$	
Wechselstromstärke Messgeräte	100 μA bis	< 330 μΑ	10 Hz 20 Hz 45 Hz 1 kHz 5 kHz	bis bis bis bis	< 45 Hz < 1 kHz < 5 kHz	$0.23 \cdot 10^{-2} \cdot I + 0.2 \mu A$ $0.17 \cdot 10^{-2} \cdot I + 0.2 \mu A$ $0.14 \cdot 10^{-2} \cdot I + 0.2 \mu A$ $0.34 \cdot 10^{-2} \cdot I + 0.2 \mu A$ $0.34 \cdot 10^{-2} \cdot I + 0.3 \mu A$	I = jeweiliger Messwert
	0,33 mA bis	< 3,3 mA	10 Hz 20 Hz 45 Hz 1 kHz 5 kHz		< 45 Hz < 1 kHz < 5 kHz	$0.23 \cdot 10^{-2} \cdot I + 0.2 \mu$ A $0.14 \cdot 10^{-2} \cdot I + 0.2 \mu$ A $0.11 \cdot 10^{-2} \cdot I + 0.2 \mu$ A $0.23 \cdot 10^{-2} \cdot I + 0.3 \mu$ A $0.57 \cdot 10^{-2} \cdot I + 0.4 \mu$ A	

Permanentes Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

	1	/	i	_		ı	l
Messgröße /	Messber	•		-	gungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messsp	anne	V	erfah	ren	Messunsicherheit	
Wechselstromstärke	3,3 mA bis	< 33 mA	10 Hz	bis		$0,20 \cdot 10^{-2} \cdot I + 2,3 \mu\text{A}$	<i>I</i> = jeweiliger
Messgeräte			20 Hz	bis	< 45 Hz	$0.10 \cdot 10^{-2} \cdot I + 2.3 \mu\text{A}$	Messwert
			45 Hz	bis	< 1 kHz	$0,46 \cdot 10^{-3} \cdot I + 2,3 \mu A$	
			1 kHz	bis	< 5 kHz	$0.92 \cdot 10^{-3} \cdot I + 2.3 \mu\text{A}$	
			5 kHz	bis	10 kHz	$0,23 \cdot 10^{-2} \cdot I + 3,4 \mu\text{A}$	
	33 mA bis	< 330 mA	10 Hz	bis	< 20 Hz	$0.20 \cdot 10^{-2} \cdot I + 23 \mu\text{A}$	
			20 Hz	bis	< 45 Hz	$0.10 \cdot 10^{-2} \cdot I + 23 \mu\text{A}$	
			45 Hz	bis	< 1 kHz	$0,46 \cdot 10^{-3} \cdot I + 23 \mu\text{A}$	
			1 kHz	bis	< 5 kHz	$0.11 \cdot 10^{-2} \cdot I + 57 \mu\text{A}$	
			5 kHz	bis	10 kHz	$0,23 \cdot 10^{-2} \cdot I + 0,11 \text{ mA}$	
	0,33 A bis	< 1,1 A	10 Hz	bis	< 45 Hz	0,20 · 10 ⁻² · <i>I</i> + 0,11 mA	
			45 Hz	bis	< 1 kHz	$0.58 \cdot 10^{-3} \cdot I + 0.11 \text{ mA}$	
			1 kHz	bis	< 5 kHz	$0,69 \cdot 10^{-2} \cdot I + 1,1 \text{ mA}$	
			5 kHz	bis	10 kHz	2,8 · 10 ⁻² · <i>I</i> + 5,7 mA	
	1,1 A bis	< 11 A	45 Hz	bis	< 100 Hz	0,69 · 10 ⁻³ · <i>I</i> + 2,3 mA	
			100 Hz	bis	< 1 kHz	$0,12 \cdot 10^{-2} \cdot I + 2,3 \text{ mA}$	
			1 kHz	bis	5 kHz	$0.34 \cdot 10^{-2} \cdot I + 2.3 \text{ mA}$	
	11 A bis	20 A	45 Hz	bis	< 100 Hz	0,14 · 10 ⁻² · <i>I</i> + 5,7 mA	
			100 Hz	bis	< 1 kHz	$0.17 \cdot 10^{-2} \cdot I + 5.7 \text{ mA}$	
			1 kHz	bis	5 kHz	$3,4 \cdot 10^{-2} \cdot I + 5,7 \text{ mA}$	
Wechselstromstärke	0,1 mA bis	< 1 mA	45 Hz	bis	1 kHz	$0.23 \cdot 10^{-3} \cdot I + 0.11 \text{ mA}$	
Quellen	1 mA bis	< 10 mA				$0.23 \cdot 10^{-3} \cdot I + 0.11 \text{ mA}$	
	10 mA bis	< 100 mA				$0.30 \cdot 10^{-3} \cdot I + 0.11 \text{ mA}$	
	100 mA bis	1 A				$0.93 \cdot 10^{-3} \cdot I + 0.2 \text{ mA}$	
Zeit und Frequenz							
Frequenz	1 Hz bis	225 MHz				$0.2 \cdot 10^{-6} \cdot f$	<i>f</i> = jeweiliger
Geber							Messwert

Mobiles Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Zylindrische Einstellnormale *					
Lehrringe Durchmesser	10 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006 Option 3 und 4	0,8 μm + 14 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer
Lehrdorne Durchmesser	3 mm bis	100 mm	Option 3 unu 4	0,8 μm + 14 · 10 ⁻⁶ · <i>d</i>	
Messschieber für Außen-, Innen- und Tiefenmaße *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge 300 mm = Endwert des
Tiefenmessschieber *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	Messbereiches

Mobiles Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Bügelmessschrauben *	0 mm bis 300 mr	NDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches
Messuhren mit Skalenanzeige *	bis 100 mr	N VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Messuhren mit Ziffernanzeige *	bis 100 mr	N VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Feinzeiger *	bis 3 mr	NDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	

Vor-Ort-Kalibrierung - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Koordinatenmesstechnik						
Profilprojektoren, Messmikroskope *	0 mm	bis	200 mm	Kalibrierung der messtechnischen Eigenschaften nach DKD-R 4-3 Blatt 18.1:2018, sowie der unten genannten Normen und Richtlinien DIN EN ISO 10360 VDI/VDE 2617 JIS B 7184:1999		
				Bestimmung der Antastabweichung PS-1D(OT) mit einem Strichmaßstab aus Glas gemäß VDI/VDE 2617 Blatt 6.1:2021 Bestimmung der Längen-	0,8 μm 1,6 μm + 1 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
				messabweichung E-1D(OT) mit einem Strichmaßstab aus Glas gemäß VDI/VDE 2617 Blatt 6.1:2021	1,5 μπ. 1 10 1	- Semessene Eurige

Braunschweig

Permanentes Laboratorium - Braunschweig

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	1	sbere		Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messspanne		nne	Verfahren	Messunsicherheit	
Gleichstrom und Niederfrequenz						
Gleichspannung	1 mV	bis	0,22 V		$15 \cdot 10^{-6} \cdot U$ + 3 μV	U = Messwert
Messgeräte	> 0,22 V	bis	2,2 V		$15 \cdot 10^{-6} \cdot U + 3 \mu V$	
	> 2,2 V	bis	22 V		$15 \cdot 10^{-6} \cdot U + 25 \mu\text{V}$	
	> 22 V	bis	220 V		$15 \cdot 10^{-6} \cdot U + 0.25 \text{ m}$	V
-	> 220 V	bis	1000 V		$15 \cdot 10^{-6} \cdot U + 2 \text{ mV}$	
Gleichspannung	1 mV	bis	1 V		$30 \cdot 10^{-6} \cdot U + 3 \mu\text{V}$	
Quellen	> 1 V	bis	10 V		$30 \cdot 10^{-6} \cdot U + 2 \mu\text{V}$	
	> 10 V	bis	100 V		$30 \cdot 10^{-6} \cdot U + 50 \mu\text{V}$	
	> 100 V	bis	1000 V		$35 \cdot 10^{-6} \cdot U + 1 \text{ mV}$	
Gleichstromstärke	1 μΑ	bis	2,2 mA		$80 \cdot 10^{-6} \cdot I + 0.1 \mu\text{A}$	I = Messwert
Messgeräte	> 2,2 mA	bis	22 mA		$80 \cdot 10^{-6} \cdot I + 0.3 \mu\text{A}$	
	> 22 mA	bis	220 mA		$90 \cdot 10^{-6} \cdot I + 5 \mu A$	
	> 220 mA	bis	2,2 A		$0.16 \cdot 10^{-3} \cdot I + 50 \mu\text{A}$	
	> 2,2 A	bis	20 A		0,6 · 10 ⁻³ · <i>I</i> + 2,5 mA	
Gleichstromstärke	1 μΑ	bis	1,2 mA		$30 \cdot 10^{-6} \cdot I + 0.1 \mu\text{A}$	
Quellen	> 1,2 mA	bis	12 mA		$35 \cdot 10^{-6} \cdot I + 0,1 \mu\text{A}$	
	> 12 mA	bis	120 mA		$50 \cdot 10^{-6} \cdot I + 5 \mu A$	
	> 120 mA	bis	1 A		$0.15 \cdot 10^{-3} \cdot I + 50 \mu\text{A}$	
	> 1 A	bis	10 A	Mit Shunt 0,01 Ω	$0.15 \cdot 10^{-3} \cdot I + 0.2 \text{ mA}$	
Gleichstromwiderstand		1Ω			$0.2 \cdot 10^{-3} \cdot R$	R = Messwert
Messgeräte		1,9 Ω			$0,15 \cdot 10^{-3} \cdot R$	
		10 Ω			$50 \cdot 10^{-6} \cdot R$	
		19 Ω			$75 \cdot 10^{-6} \cdot R$	
			Ω; 1 kΩ		$50 \cdot 10^{-6} \cdot R$	
	, ,		Ω; 19 kΩ		50 · 10 ⁻⁶ · R	
			Ω; 1 ΜΩ		50 · 10 ⁻⁶ · R	
		1,9 M			$0.2 \cdot 10^{-3} \cdot R$	
		10 MΩ			$0,1 \cdot 10^{-3} \cdot R \\ 0,7 \cdot 10^{-3} \cdot R$	
		ΙΩ; 10			·	<u> </u>
Gleichstromwiderstand	1Ω		12 Ω		$15 \cdot 10^{-6} \cdot R + 0.3 \text{ m}\Omega$	
Widerstände	> 12 Ω	bis	120 Ω		$15 \cdot 10^{-6} \cdot R + 2.5 \text{ m}\Omega$	
	> 120 Ω	bis	1,2 kΩ		$15 \cdot 10^{-6} \cdot R + 15 \text{ m}\Omega$	
	> 1,2 kΩ	bis	12 kΩ		$15 \cdot 10^{-6} \cdot R + 0.1 \Omega$	
	> 12 kΩ	bis	120 kΩ		$15 \cdot 10^{-6} \cdot R + 1,5 \Omega$ $15 \cdot 10^{-6} \cdot R + 20 \Omega$	
	> 120 kΩ		1,2 MΩ 12 MΩ		$15 \cdot 10^{-6} \cdot R + 20 \Omega$ $30 \cdot 10^{-6} \cdot R + 1 k\Omega$	
	> 1,2 MΩ > 12 MΩ	bis bis	12 ΜΩ 120 ΜΩ		$0.3 \cdot 10^{-3} \cdot R + 1 \text{ k}\Omega$ $0.3 \cdot 10^{-3} \cdot R + 80 \text{ k}\Omega$	
	~ T	บเว	TZO IVIZZ		0,3 10 1 A + 00 K7	L

Permanentes Laboratorium - Braunschweig

Kalibrier- und Messmöglichkeiten (CMC)

	İ			I .	_	Keiten (CIVIC	-	1
Messgröße /		sberei		Messbeding		Erweite		Bemerkungen
Kalibriergegenstand		ssspar		Verfahr		Messunsich		
Wechselspannung	0,1 V	bis	0,22 V	20 Hz bis	40 Hz	0,3 \cdot 10 ⁻³ \cdot U +	•	U = Messwert
Messgeräte				> 40 Hz bis	20 kHz	$0.3 \cdot 10^{-3} \cdot U +$	•	
				> 20 kHz bis	50 kHz	0,5 \cdot 10 ⁻³ \cdot U +	•	
				> 50 kHz bis	100 kHz	1,2 \cdot 10 ⁻³ \cdot U +	30 μV	
	> 0,22 V	bis	2,2 V	20 Hz bis	40 Hz	0,25 \cdot 10 ⁻³ \cdot U +	0,11 mV	
				> 40 Hz bis	20 kHz	$0,15 \cdot 10^{-3} \cdot U +$		
				> 20 kHz bis	50 kHz	$0,2 \cdot 10^{-3} \cdot U +$		
				> 50 kHz bis	100 kHz	$0.35 \cdot 10^{-3} \cdot U +$		
				> 100 kHz bis		0,6 · 10 ⁻³ · <i>U</i> +	0,6 mV	
				> 300 kHz bis		2 · 10 ⁻³ · <i>U</i> +		
				> 500 kHz bis	1 MHz	3,5 \cdot 10 ⁻³ \cdot U +		
	> 2,2 V	hic	22 V	20 Hz bis	40 Hz	0,25 · 10 ⁻³ · <i>U</i> +		1
	> 2,2 V	DIS	22 V	> 40 Hz bis	20 kHz	$0,25 \cdot 10^{-3} \cdot U + 0,15 \cdot 10^{-3} \cdot U +$		
				> 20 kHz bis	50 kHz	$0.13 \cdot 10^{3} \cdot U + 0.2 \cdot 10^{-3} \cdot U + 0.2 $		
				> 50 kHz bis		$0.35 \cdot 10^{-3} \cdot U +$		
				> 100 kHz bis		$0.75 \cdot 10^{-3} \cdot U +$		
				> 300 kHz bis		$2,5 \cdot 10^{-3} \cdot U +$		
				> 500 kHz bis	1 MHz	4 · 10 ⁻³ · <i>U</i> +		<u> </u>
	> 22 V	bis	220 V	20 Hz bis	40 Hz	0,25 \cdot 10 ⁻³ \cdot U +	10 mV	
				> 40 Hz bis	20 kHz	0,1 \cdot 10 ⁻³ \cdot U +		
				> 20 kHz bis	50 kHz	0,3 \cdot 10 ⁻³ \cdot U +		
				> 50 kHz bis	100 kHz	$1\cdot 10^{\text{-3}}\cdot U$ +	20 mV	
	> 220 V	bis	1100 V	50 Hz bis	1 kHz	0,1 \cdot 10 ⁻³ \cdot U +	0,25 V	
Wechselspannung	0,1 V	bis	0,12 V	20 Hz bis	40 Hz	0,1 \cdot 10 ⁻³ \cdot U +	50 μV	
Quellen				> 40 Hz bis	20 kHz	0,1 \cdot 10 ⁻³ \cdot U +	50 μV	
				> 20 kHz bis	50 kHz	0,2 \cdot 10 ⁻³ \cdot U +	50 μV	
				> 50 kHz bis	100 kHz	1 \cdot 10 ⁻³ \cdot U +	50 μV	
	> 0,12 V	his	1,2 V	20 Hz bis	40 Hz	0,2 · 10 ⁻³ · <i>U</i> +	0.2 mV	1
	, 0,12	0.0	±, = •	> 40 Hz bis	20 kHz	$0.2 \cdot 10^{-3} \cdot U +$		
				> 20 kHz bis	50 kHz	$0.35 \cdot 10^{-3} \cdot U +$	•	
				> 50 kHz bis		$1 \cdot 10^{-3} \cdot U +$		
				> 100 kHz bis		$3.5 \cdot 10^{-3} \cdot U +$	•	
				> 300 kHz bis	1 MHz	$12 \cdot 10^{-3} \cdot U +$	•	
	. 4 2) /	1	42.1/	†				-
	> 1,2 V	DIS	12 V	20 Hz bis	40 Hz	$0.1 \cdot 10^{-3} \cdot U +$		
				> 40 Hz bis	20 kHz	$0.15 \cdot 10^{-3} \cdot U +$		
				> 20 kHz bis		$0.35 \cdot 10^{-3} \cdot U +$		
				> 50 kHz bis		$1 \cdot 10^{-3} \cdot U +$		
				> 100 kHz bis		$3.5 \cdot 10^{-3} \cdot U +$		
				> 300 kHz bis	1 MHz	12 · 10 ⁻³ · <i>U</i> +		
	> 12 V	bis	120 V	20 Hz bis	40 Hz	0,25 \cdot 10 ⁻³ \cdot U +	15 mV	
				> 40 Hz bis	20 kHz	0,25 \cdot 10 ⁻³ \cdot U +	10 mV	
				> 20 kHz bis	50 kHz	0,4 \cdot 10 ⁻³ \cdot U +	10 mV	
				> 50 kHz bis	100 kHz	1,5 \cdot 10 ⁻³ \cdot U +	20 mV	
	> 120 V	bis	700 V	40 Hz bis	1 kHz	0,55 · 10 ⁻³ · <i>U</i> +	20 mV	1
				1 2 1.2 313		-,0 0 .	· - ····•	1

Permanentes Laboratorium - Braunschweig

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			Messbedingu Verfahre	•	Erweiterte Messunsicherheit	Bemerkungen
Wechselstromstärke Messgeräte	220 µA >2,2 mA > 22 mA > 220 mA > 2,2 A	bis bis bis	2,2 mA 22 mA 220 mA 2,2 A 10 A	40 Hz bis	1 kHz	0,2 · 10 ⁻³ · I + 0,5 μ A 0,25 · 10 ⁻³ · I + 1,5 μ A 0,5 · 10 ⁻³ · I + 50 μ A 1,2 · 10 ⁻³ · I + 0,22 μ A 1,2 · 10 ⁻³ · I + 2,5 μ A	I = Messwert
Wechselstromstärke Quellen	200 μA > 1,2 mA > 12 mA > 120 mA	bis bis bis bis	1,2 mA 12 mA 120 mA 1 A	45 Hz bis	1 kHz	$0.5 \cdot 10^{-3} \cdot I + 0.5 \text{ μA}$ $0.5 \cdot 10^{-3} \cdot I + 5 \text{ μA}$ $0.5 \cdot 10^{-3} \cdot I + 50 \text{ μA}$ $1 \cdot 10^{-3} \cdot I + 0.5 \text{ mA}$	
Zeit und Frequenz Frequenz	5 MI	łz; 10	MHz			$7 \cdot 10^{-11} \cdot f + u_{\text{Tf}}$	f = Messwert
Messgeräte	1 Hz		100 kHz			$\frac{1}{2 \cdot [(5 \cdot 10^{-11} \cdot f)^2 + (1 \mu\text{Hz})^2 + (u_{\text{Tf}})^2]^{1/2}}$	
	> 100 kHz	bis	1 GHz			$2 \cdot [(5 \cdot 10^{-11} \cdot f)^2 + (1 \text{ Hz})^2 + (u_{\text{Tf}})^2]^{1/2}$	u_{Tf} = Triggerunsicherheit
Frequenz Generatoren	10 Hz	bis	1 GHz			$2 \cdot [(1 \cdot 10^{-9} \cdot f)^2 + (u_{Tf})^2]^{1/2}$	u _{Tf} = Triggerun- sicherheit

Leipzig

Permanentes Laboratorium - Leipzig

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Messbereich /	Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messspanne	Verfahren	Messunsicherheit	
Länge * Messschieber für Außen-, Innen- und Tiefenmaße	0 mm bis 200 mm	VDI/VDE/DGQ 2618 Blatt 9.1:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge

Gültig ab: 10.01.2024 Ausstellungsdatum: 10.01.2024

Seite 54 von 70

Wetzlar

Permanentes Laboratorium - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

	каг	ıbrı	er- una	iviessmo	gII	cnkeit	en (CMC)	1
Messgröße /	Mes	sbere	eich /	Messbedi	ingu	ngen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Me	ssspa	inne	Verfa	ahre	n	Messunsicherheit	
Gleichstrom und								
Niederfrequenz								
Gleichspannung	100 μV	bis	< 220 mV				$12 \cdot 10^{-6} \cdot U + 2 \mu\text{V}$	U = Messwert
Messgeräte	220 mV	bis	< 2,2 V				$11 \cdot 10^{-6} \cdot U + 2 \mu\text{V}$	- messivere
essBerate	2,2 V	bis	< 11 V				$11 \cdot 10^{-6} \cdot U + 7 \mu\text{V}$	
	11 V	bis	< 22 V				$11 \cdot 10^{-6} \cdot U + 9 \mu\text{V}$	
	22 V	bis	< 220 V				$12 \cdot 10^{-6} \cdot U + 0,16 \text{ mV}$	
	220 V	bis	1100 V				$14 \cdot 10^{-6} \cdot U + 1,2 \text{ mV}$	
Gleichstromstärke	50 μΑ	bis	< 220 μΑ				69 · 10 ⁻⁶ · <i>I</i> + 12 nA	I = Messwert
Messgeräte	0,22 mA	bis	< 2,2 mA				68 · 10⁻⁶ · <i>I</i> + 16 nA	
3	2,2 mA	bis	< 22 mA				68 · 10 ⁻⁶ · <i>I</i> + 0,16 μA	
	22 mA	bis	< 220 mA				80 · 10 ⁻⁶ · <i>I</i> + 1,6 μA	
	0,22 A	bis	2,2 A				$0.11 \cdot 10^{-3} \cdot I + 43 \mu\text{A}$	
	> 2,2 A	bis	11 A				0,69 · 10 ⁻³ · <i>I</i> + 0,46 mA	
Stromzangen	1 mA	bis	20 A				2,5 · 10 ⁻³ · <i>I</i>	
	> 20 A	bis	900 A				$4.0\cdot 10^{-3}\cdot I$	
Wechselspannung	2 mV	bis	< 2,2 mV	10 Hz b	ois	20 Hz	$0,69 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	U = Messwert
Messgeräte				> 20 Hz b	ois		0,28 · 10 ⁻³ · U + 6 μV	
				> 40 Hz b	ois	20 kHz	0,14 · 10 ⁻³ · U + 6 μV	
				> 20 kHz b	ois	50 kHz	0,47 · 10 ⁻³ · U + 6 μV	
				> 50 kHz b	ois	100 kHz	1,1 \cdot 10 ⁻³ \cdot U + 10 μ V	
	2,2 mV	bis	< 22 mV	10 Hz b	ois		$0,69 \cdot 10^{-3} \cdot U + 8 \mu\text{V}$	
				> 20 Hz b	ois	40 Hz	0,28 · 10 ⁻³ · U + 8 μV	
				> 40 Hz b		20 kHz	I .	
				> 20 kHz b		50 kHz		
				> 50 kHz b	ois	100 kHz	$1,1 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
	22 mV	bis	< 220 mV	10 Hz b		20 Hz		
				> 20 Hz b		40 Hz	, <i>'</i>	
				> 40 Hz b			$0.13 \cdot 10^{-3} \cdot U + 13 \mu\text{V}$	
				> 20 kHz b		50 kHz	$0.4 \cdot 10^{-3} \cdot U + 13 \mu\text{V}$	
				> 50 kHz b	ois	100 kHz	$0,42 \cdot 10^{-3} \cdot U + 13 \mu\text{V}$	
	0,22 V	bis	< 2,2 V	10 Hz b		20 Hz		
				> 20 Hz b		40 Hz		
				> 40 Hz b		20 kHz	'	
				> 20 kHz b			$0.16 \cdot 10^{-3} \cdot U + 27 \mu\text{V}$	
				> 50 kHz b	ois	100 kHz	$0,32 \cdot 10^{-3} \cdot U + 96 \mu V$	
	2,2 V	bis	< 22 V	10 Hz b		20 Hz	0,69 \cdot 10 ⁻³ \cdot U + 1,2 mV	
				> 20 Hz b		40 Hz	$0.2 \cdot 10^{-3} \cdot U + 0.45 \text{ mV}$	
				> 40 Hz b		20 kHz	$95\cdot 10^{-6}\cdot U$ + 0,22 mV	
				> 20 kHz b		50 kHz		
				> 50 kHz b	ois	100 kHz	$0.32 \cdot 10^{-3} \cdot U + 0.53 \text{ mV}$	_
	22 V	bis	< 220 V	10 Hz b		20 Hz	l *	
				> 20 Hz b		40 Hz	$0.2 \cdot 10^{-3} \cdot U + 5 \text{ mV}$	
				> 40 Hz b		20 kHz	$95 \cdot 10^{-6} \cdot U + 3,6 \text{ mV}$	
				> 20 kHz b		50 kHz		
				> 50 kHz b	ois	100 kHz	0,7 \cdot 10 ⁻³ \cdot U + 12 mV	

Permanentes Laboratorium - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		sbere ssspa	eich / nne	Messbedingu Verfahre		Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung Messgeräte	220 V	bis	1100 V	45 Hz bis > 330 Hz bis > 10 kHz bis	330 Hz 10 kHz 33 kHz	$\begin{array}{c} \text{0,16} \cdot 10^{\text{-3}} \cdot U + \text{11 mV} \\ \text{0,12} \cdot 10^{\text{-3}} \cdot U + \text{11 mV} \\ \text{0,16} \cdot 10^{\text{-3}} \cdot U + \text{11 mV} \end{array}$	U = Messwert
Wechselstromstärke Messgeräte	50 μΑ	bis	< 220 μΑ	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	0,92 · 10 ⁻³ · <i>I</i> + 0,04 μA 0,48 · 10 ⁻³ · <i>I</i> + 0,04 μA 0,18 · 10 ⁻³ · <i>I</i> + 0,03 μA 0,8 · 10 ⁻³ · <i>I</i> + 0,06 μA 0,8 · 10 ⁻³ · <i>I</i> + 0,06 μA	I = Messwert
	0,22 mA	bis	< 2,2 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	0,92 · 10 ⁻³ · <i>I</i> + 0,07 μA 0,48 · 10 ⁻³ · <i>I</i> + 0,06 μA 0,18 · 10 ⁻³ · <i>I</i> + 0,07 μA 0,8 · 10 ⁻³ · <i>I</i> + 0,6 μA 0,8 · 10 ⁻³ · <i>I</i> + 0,6 μA	
	2,2 mA	bis	< 22 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	0,92 \cdot 10 ⁻³ \cdot I + 0,7 μ A 0,48 \cdot 10 ⁻³ \cdot I + 0,6 μ A 0,18 \cdot 10 ⁻³ \cdot I + 0,7 μ A 0,8 \cdot 10 ⁻³ \cdot I + 6 μ A 0,8 \cdot 10 ⁻³ \cdot I + 6 μ A	
	22 mA	bis	< 220 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	0,92 · 10 ⁻³ · <i>I</i> + 7 μA 0,48 · 10 ⁻³ · <i>I</i> + 6 μA 0,2 · 10 ⁻³ · <i>I</i> + 7 μA 0,8 · 10 ⁻³ · <i>I</i> + 60 μA 0,8 · 10 ⁻³ · <i>I</i> + 60 μA	
	0,22 A	bis	2,2 A	40 Hz bis > 330 Hz bis > 3,3 kHz bis	330 Hz 3,3 kHz 5 kHz	$0.86 \cdot 10^{-3} \cdot I + 60 \mu A$ $0.98 \cdot 10^{-3} \cdot I + 0.13 \text{ mA}$ $0.98 \cdot 10^{-3} \cdot I + 0.13 \text{ mA}$	
	> 2,2 A	bis	11 A	50 Hz bis > 330 Hz bis	330 Hz 1 kHz	$1,2 \cdot 10^{-3} \cdot I + 2,4 \text{ mA}$ $3,9 \cdot 10^{-3} \cdot I + 2,4 \text{ mA}$	
Stromzangen	1 mA > 20 A	bis bis	20 A 900 A	45 Hz bis	400 Hz	2,5 · 10 ⁻³ · <i>I</i> 4,0 · 10 ⁻³ · <i>I</i>	
Gleichstromleistung Messgeräte	100 mW	bis	12 kW	Produkt aus U $1 \ V \le U$ $0,1 \ A \le I$	<i>J</i> und <i>I;</i> ≤ 600 V ≤ 20 A	1,6 · 10⁻³ · <i>P</i>	P = Messwert
Wechselstromwirk- leistung Messgeräte	100 mW	bis	12 kW	$\begin{array}{ccc} 45 \text{ Hz} & \text{bis} \\ 0.5 \leq & \cos \varphi \\ 1 \text{ V} \leq & U \\ 0.1 \text{ A} \leq & I \end{array}$	65 Hz ≤ 1,0 ≤ 600 V ≤ 20 A	0,44 · 10 ⁻³ · P	
Leistungsfaktor Messgeräte	≥ 0,5	bis	≤ 1,0	230 V; 2,5 45 Hz bis	A 65 Hz	$1.0 \cdot 10^{-3} \cdot \cos \varphi$	$\cos \varphi$ = Messwert

Permanentes Laboratorium - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		sbere ssspa		Messbedingt Verfahr	ungen /	Erweiterte Messunsicherheit	Bemerkungen
Gleichstromwiderstand Messgeräte	1 10 :	1 Ω 10 Ω 100 Ω 1 kΩ 10 kΩ 00 kΩ 1 MΩ 0 MΩ				$20 \cdot 10^{-6} \cdot R$ $9 \cdot 10^{-6} \cdot R$ $7 \cdot 10^{-6} \cdot R$ $7 \cdot 10^{-6} \cdot R$ $30 \cdot 10^{-6} \cdot R$ $7 \cdot 10^{-6} \cdot R$ $9 \cdot 10^{-6} \cdot R$ $12 \cdot 10^{-6} \cdot R$ $0,15 \cdot 10^{-3} \cdot R$	R = Messwert mit Kalibrator 5700A
	1 1 10 10	001 Ω ,01 Ω 0,1 Ω 1 Ω 10 Ω 1 kΩ 10 kΩ 10 kΩ 1 MΩ 0 MΩ 1 MΩ 1 GΩ				$1,7 \cdot 10^{-3} \cdot R$ $0,12 \cdot 10^{-3} \cdot R$ $0,12 \cdot 10^{-3} \cdot R$ $17 \cdot 10^{-6} \cdot R$ $30 \cdot 10^{-6} \cdot R$ $26 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $0,15 \cdot 10^{-3} \cdot R$ $0,62 \cdot 10^{-3} \cdot R$ $1,8 \cdot 10^{-3} \cdot R$	R = Messwert mit Festwiderständen
Frequenz	10 Hz	bis	1 GHz			1,0 · 10 ⁻⁹ · <i>f</i>	f = Messwert
Gleichspannung Quellen	10 mV > 100 mV > 1 V > 10 V > 100 V	bis bis bis bis bis	100 mV 1 V 10 V 100 V 1000 V			$5 \cdot 10^{-6} \cdot U + 2,5 \text{ µV}$ $10 \cdot 10^{-6} \cdot U + 2,0 \text{ µV}$ $9 \cdot 10^{-6} \cdot U + 3,0 \text{ µV}$ $15 \cdot 10^{-6} \cdot U$ $19 \cdot 10^{-6} \cdot U$	
Gleichstromstärke Quellen	100 μA > 1 mA > 10 mA > 100 mA	bis bis bis bis	1 mA 10 mA 100 mA 1 A			73 · 10 ⁻⁶ · <i>I</i> 73 · 10 ⁻⁶ · <i>I</i> 0,14 · 10 ⁻³ · <i>I</i> 0,21 · 10 ⁻³ · <i>I</i>	I = Messwert
Wechselspannung Quellen	10 mV	bis	100 mV	40 Hz bis > 100 Hz bis > 2 kHz bis	100 Hz 2 kHz 10 kHz	$\begin{array}{c} 0,62 \cdot 10^{\text{-3}} \cdot U + 4,5 \; \mu\text{V} \\ 0,50 \cdot 10^{\text{-3}} \cdot U + 5,0 \; \mu\text{V} \\ 0,62 \cdot 10^{\text{-3}} \cdot U + 4,5 \; \mu\text{V} \end{array}$	U = Messwert
	> 100 mV	bis	1 V	40 Hz bis > 100 Hz bis > 2 kHz bis	100 Hz 2 kHz 10 kHz	$0,12 \cdot 10^{-3} \cdot U + 2,5 \ \mu V$ $0,10 \cdot 10^{-3} \cdot U + 5,0 \ \mu V$ $0,12 \cdot 10^{-3} \cdot U + 4,0 \ \mu V$	
Wechselspannung Quellen	> 1 V	bis	10 V	40 Hz bis > 100 Hz bis > 2 kHz bis	100 Hz 2 kHz 10 kHz	$\begin{array}{l} \textbf{0,13} \cdot \textbf{10}^{\text{-3}} \cdot U \\ \textbf{0,16} \cdot \textbf{10}^{\text{-3}} \cdot U \\ \textbf{0,23} \cdot \textbf{10}^{\text{-3}} \cdot U \end{array}$	U = Messwert
	> 10 V	bis	100 V	40 Hz bis > 100 Hz bis > 2 kHz bis	100 Hz 2 kHz 10 kHz	$\begin{array}{l} \textbf{0,13} \cdot \textbf{10}^{\text{-3}} \cdot U \\ \textbf{0,11} \cdot \textbf{10}^{\text{-3}} \cdot U \\ \textbf{0,21} \cdot \textbf{10}^{\text{-3}} \cdot U \end{array}$	
	> 100 V	bis	1000 V	40 Hz bis > 100 Hz bis > 2 kHz bis	100 Hz 2 kHz 10 kHz	$\begin{array}{l} {\sf 0,24\cdot 10^{\text{-}3}\cdot \it{U}} \\ {\sf 0,16\cdot 10^{\text{-}3}\cdot \it{U}} \\ {\sf 0,27\cdot 10^{\text{-}3}\cdot \it{U}} \end{array}$	

Permanentes Laboratorium - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

	·	10110	.i uiiu	IVICSSIIIOGII	CHRCIC	ch (chic)	•
Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingu Verfahre	0 .	Erweiterte Messunsicherheit	Bemerkungen	
Wechselstromstärke Quellen	100 μΑ	bis	1 mA	40 Hz bis > 100 Hz bis	100 Hz 1 kHz	$0,49 \cdot 10^{-3} \cdot I$ $0,48 \cdot 10^{-3} \cdot I$	I = Messwert
	> 1 mA	bis	10 mA	40 Hz bis > 100 Hz bis	100 Hz 1 kHz	$0,48 \cdot 10^{-3} \cdot I$ $0,47 \cdot 10^{-3} \cdot I$	
	> 10 mA	bis	100 mA	40 Hz bis > 100 Hz bis	100 Hz 1 kHz	0,49 · 10 ⁻³ · <i>I</i> 0,47 · 10 ⁻³ · <i>I</i>	
	> 100 mA	bis	1 A	40 Hz bis > 100 Hz bis	100 Hz 1 kHz	$1.1 \cdot 10^{-3} \cdot I$ $1.1 \cdot 10^{-3} \cdot I$	
Gleichstromwiderstand Widerstände Oszilloskopmessgrößen Vertikalablenkung	1Ω > 10 Ω > 100 Ω > 1 kΩ 10 kΩ > 100 kΩ > 1 MΩ > 1 MΩ > 1 MΩ	bis bis bis bis bis bis bis bis	10 Ω 100 Ω 1 kΩ < 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ	50 Ω		$52 \cdot 10^{-6} \cdot R$ $27 \cdot 10^{-6} \cdot R$ $18 \cdot 10^{-6} \cdot R$ $25 \cdot 10^{-6} \cdot R$ $16 \cdot 10^{-6} \cdot R$ $22 \cdot 10^{-6} \cdot R$ $55 \cdot 10^{-6} \cdot R$ $0,59 \cdot 10^{-3} \cdot R$ $2,0 \cdot 10^{-3} \cdot U + 0,15 \text{ mV}$	R = Messwert in Vier-Leiter- Schaltung U = Messwert
Horizontalablenkung	5 mV 2 ns	bis bis	200 V 10 ns	1 ΜΩ		6 ps	t = Messwert
Homzontalablemkung	20 ns	bis	1 μs			$50 \cdot 10^{-6} \cdot t + 0,6 \text{ ns}$	ι – Ινίουσονος ι
	2 μs	bis	5 s			$4,0 \cdot 10^{-3} \cdot t$	
Anstiegszeit		≥ 1 ns		25 mV bis	1 V	$50 \cdot 10^{-3} \cdot t + 3 \text{ ps}$	<pre>t = Messwert bei 1 MHz</pre>

Vor-Ort-Kalibrierung - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

	Kanbi	iei- unu	Wessing itenkerten (CWC)				
Messgröße / Kalibriergegenstand	Messber Messspa	•	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen		
Gleichstrom und Niederfrequenz							
Gleichspannung Messgeräte	100 μV bis 220 mV bis 2,2 V bis 11 V bis 22 V bis 220 V bis	< 220 mV < 2,2 V < 11 V < 22 V < 220 V 1100 V		$\begin{aligned} &12 \cdot 10^{-6} \cdot U + 2 \; \mu\text{V} \\ &11 \cdot 10^{-6} \cdot U + 2 \; \mu\text{V} \\ &11 \cdot 10^{-6} \cdot U + 7 \; \mu\text{V} \\ &11 \cdot 10^{-6} \cdot U + 9 \; \mu\text{V} \\ &12 \cdot 10^{-6} \cdot U + 0,16 \; \text{mV} \\ &14 \cdot 10^{-6} \cdot U + 1,2 \; \text{mV} \end{aligned}$	U = Messwert		
Gleichstromstärke Messgeräte	50 μA bis 0,22 mA bis 2,2 mA bis 22 mA bis 0,22 A bis > 2,2 A bis	< 220 μA < 2,2 mA < 22 mA < 220 mA 2,2 A 11 A		$69 \cdot 10^{-6} \cdot I + 12 \text{ nA}$ $68 \cdot 10^{-6} \cdot I + 16 \text{ nA}$ $68 \cdot 10^{-6} \cdot I + 0,16 \text{ μA}$ $80 \cdot 10^{-6} \cdot I + 1,6 \text{ μA}$ $0,11 \cdot 10^{-3} \cdot I + 43 \text{ μA}$ $0,69 \cdot 10^{-3} \cdot I + 0,46 \text{ mA}$	I = Messwert		

Vor-Ort-Kalibrierung - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes		eich /	Messbeding Verfahr	ungen /	Erweiterte Messunsicherheit	Bemerkungen
Stromzangen	1 mA > 10 A	bis bis	10 A 500 A			3,0 · 10 ⁻³ · <i>I</i> 5,0 · 10 ⁻³ · <i>I</i>	I = Messwert mit Spulen mit 1 Windung bis 50 Windungen
Wechselspannung Messgeräte	2 mV	bis	< 2,2 mV	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0,28 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	U = Messwert
	2,2 mV	bis	< 22 mV	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	0,28 · 10 ⁻³ · U + 8 μV 0,14 · 10 ⁻³ · U + 8 μV	
	22 mV	bis	< 220 mV	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	0,28 \cdot 10 ⁻³ \cdot U + 13 μ V 0,13 \cdot 10 ⁻³ \cdot U + 13 μ V 0,4 \cdot 10 ⁻³ \cdot U + 13 μ V	
	0,22 V	bis	< 2,2 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0.2 \cdot 10^{-3} \cdot U + 40 \mu\text{V}$ $0.1 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$ $0.16 \cdot 10^{-3} \cdot U + 27 \mu\text{V}$	
	2,2 V	bis	< 22 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$\begin{array}{c} 0.2 \cdot 10^{-3} \cdot U + 0.45 \text{ mV} \\ 95 \cdot 10^{-6} \cdot U + 0.22 \text{ mV} \\ 0.16 \cdot 10^{-3} \cdot U + 0.31 \text{ mV} \end{array}$	
	22 V	bis	< 220 V	10 Hz bis > 20 Hz bis > 40 Hz bis > 20 kHz bis > 50 kHz bis	20 Hz 40 Hz 20 kHz 50 kHz 100 kHz	$0.2 \cdot 10^{-3} \cdot U + 5 \text{ mV}$ $95 \cdot 10^{-6} \cdot U + 3.6 \text{ mV}$	
	220 V	bis	1100 V	45 Hz bis > 330 Hz bis > 10 kHz bis	10 kHz	$\begin{array}{c} 0.16 \cdot 10^{-3} \cdot U + 11 \text{ mV} \\ 0.12 \cdot 10^{-3} \cdot U + 11 \text{ mV} \\ 0.16 \cdot 10^{-3} \cdot U + 11 \text{ mV} \end{array}$	
Wechselstromstärke Messgeräte	50 μΑ	bis	< 220 μΑ	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz		I = Messwert
	0,22 mA	bis	< 2,2 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	$0.92 \cdot 10^{-3} \cdot I + 0.07 \text{ μA}$ $0.48 \cdot 10^{-3} \cdot I + 0.06 \text{ μA}$ $0.18 \cdot 10^{-3} \cdot I + 0.07 \text{ μA}$ $0.8 \cdot 10^{-3} \cdot I + 0.6 \text{ μA}$ $0.8 \cdot 10^{-3} \cdot I + 0.6 \text{ μA}$	

Vor-Ort-Kalibrierung - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messk Mess	berei	ch /	Messbeding Verfahr	ungen /	Erweiterte Messunsicherheit	Bemerkungen
	2,2 mA	bis	< 22 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	0,92 \cdot 10 ⁻³ \cdot I + 0,7 μ A 0,48 \cdot 10 ⁻³ \cdot I + 0,6 μ A 0,18 \cdot 10 ⁻³ \cdot I + 0,7 μ A 0,8 \cdot 10 ⁻³ \cdot I + 6 μ A 0,8 \cdot 10 ⁻³ \cdot I + 6 μ A	
	22 mA	bis	< 220 mA	10 Hz bis > 20 Hz bis > 40 Hz bis > 330 Hz bis > 3,3 kHz bis	20 Hz 40 Hz 330 Hz 3,3 kHz 5 kHz	$0,92 \cdot 10^{-3} \cdot I + 7 \mu A$ $0,48 \cdot 10^{-3} \cdot I + 6 \mu A$ $0,2 \cdot 10^{-3} \cdot I + 7 \mu A$ $0,8 \cdot 10^{-3} \cdot I + 60 \mu A$ $0,8 \cdot 10^{-3} \cdot I + 60 \mu A$	
	0,22 A		2,2 A	40 Hz bis > 330 Hz bis > 3,3 kHz bis	330 Hz 3,3 kHz 5 kHz	0,86 · 10 ⁻³ · <i>I</i> + 60 μA 0,98 · 10 ⁻³ · <i>I</i> + 0,13 mA 0,98 · 10 ⁻³ · <i>I</i> + 0,13 mA	
	> 2,2 A	DIS	11 A	50 Hz bis > 330 Hz bis	330 Hz 1 kHz	$1,2 \cdot 10^{-3} \cdot I + 2,4 \text{ mA}$ $3,9 \cdot 10^{-3} \cdot I + 2,4 \text{ mA}$	
Stromzangen		bis bis	10 A 500 A	45 Hz bis	400 Hz	4,0 · 10 ⁻³ · <i>I</i> 5,0 · 10 ⁻³ · <i>I</i>	I = Messwert mit Spulen mit 1 Windung bis 50 Windungen
Gleichstromleistung Messgeräte	100 mW	bis	10 kW	Produkt aus U 100 mV $\leq U \leq$ 1 1 mA $\leq I \leq$ 1	.000 V	1,5 · 10 ⁻³ · <i>P</i>	P = Messwert
Gleichstromwiderstand Messgeräte	10 100 1 10 100 100	ΜΩ ΜΩ				$20 \cdot 10^{-6} \cdot R$ $9 \cdot 10^{-6} \cdot R$ $7 \cdot 10^{-6} \cdot R$ $7 \cdot 10^{-6} \cdot R$ $30 \cdot 10^{-6} \cdot R$ $7 \cdot 10^{-6} \cdot R$ $9 \cdot 10^{-6} \cdot R$ $12 \cdot 10^{-6} \cdot R$ $0,15 \cdot 10^{-3} \cdot R$	R = Messwert mit Kalibrator 5700A
Gleichstromwiderstand Messgeräte	0, 10 100 1 100 100 1 1 10 1	1 Ω 1 Ω 0 Ω 0 Ω kΩ kΩ kΩ MΩ				$1,7 \cdot 10^{-3} \cdot R$ $0,12 \cdot 10^{-3} \cdot R$ $0,12 \cdot 10^{-3} \cdot R$ $17 \cdot 10^{-6} \cdot R$ $30 \cdot 10^{-6} \cdot R$ $26 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $20 \cdot 10^{-6} \cdot R$ $0,15 \cdot 10^{-3} \cdot R$ $0,62 \cdot 10^{-3} \cdot R$ $1,8 \cdot 10^{-3} \cdot R$	R = Messwert mit Festwiderständen

Vor-Ort-Kalibrierung - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		sbere ssspai		Messbedingu Verfahre		Erweiterte Messunsicherheit	Bemerkungen
Gleichspannung Quellen	10 mV > 100 mV > 1 V > 10 V > 100 V	bis bis bis bis bis	100 mV 1 V 10 V 100 V 1 kV			$0.25 \cdot 10^{-3} \cdot U + 2.0 \text{ μV}$ $60 \cdot 10^{-6} \cdot U + 2.0 \text{ μV}$ $75 \cdot 10^{-6} \cdot U + 2.0 \text{ μV}$ $0.1 \cdot 10^{-3} \cdot U$ $0.13 \cdot 10^{-3} \cdot U$	U = Messwert
Gleichstromstärke Quellen	100 μA > 10 mA > 100 mA	bis bis bis	10 mA 100 mA 1 A			$1,5 \cdot 10^{-3} \cdot I$ $9,9 \cdot 10^{-3} \cdot I$ $1,9 \cdot 10^{-3} \cdot I$	I = Messwert
Wechselspannung Quellen	10 mV > 100 mV > 1 V > 10 V > 10 V	bis bis bis bis bis	100 mV 1 V 10 V 100 V 750 V	40 Hz bis	10 kHz	$4,5 \cdot 10^{-3} \cdot U + 2,0 \text{ μV}$ $4,5 \cdot 10^{-3} \cdot U + 2,0 \text{ μV}$ $4,5 \cdot 10^{-3} \cdot U$ $4,5 \cdot 10^{-3} \cdot U$ $3,6 \cdot 10^{-3} \cdot U$	U = Messwert
Wechselstromstärke Quellen	1 mA > 10 mA > 100 mA	bis bis bis	10 mA 100 mA 1 A	40 Hz bis	1 kHz	0,56 · <i>I</i> 56 · 10 ⁻³ · <i>I</i> 7,0 · 10 ⁻³ · <i>I</i>	I = Messwert
Gleichstromwiderstand Widerstände	1 Ω > 10 Ω > 100 Ω > 1 kΩ > 10 kΩ > 100 kΩ	bis bis bis bis bis	10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 ΜΩ			$0.2 \cdot 10^{-3} \cdot R$ $0.18 \cdot 10^{-3} \cdot R$ $85 \cdot 10^{-6} \cdot R$ $85 \cdot 10^{-6} \cdot R$ $0.13 \cdot 10^{-3} \cdot R$ $0.15 \cdot 10^{-3} \cdot R$	R = Messwert in Vier-Leiter- Anschluss
Gleichstromwiderstand Widerstände	> 1 MΩ > 10 MΩ	bis bis	10 MΩ 100 MΩ			$0.52 \cdot 10^{-3} \cdot R$ $1.9 \cdot 10^{-3} \cdot R$	in Zwei-Leiter- Anschluss
Oszilloskopmessgrößen Vertikalablenkung	1 mV	bis bis	5 V 200 V	50 Ω 1 MΩ		2,0 \cdot 10 ⁻³ \cdot U + 0,15 mV	U = Messwert
Horizontalablenkung	2 ns 20 ns 2 μs	bis bis	10 ns 1 μs 5 s			6 ps $50 \cdot 10^{-6} \cdot t + 0.6 \text{ ns}$ $4.0 \cdot 10^{-3} \cdot t$	t = Messwert
Anstiegszeit	2	≥ 1 ns		25 mV bis	1 V	$50 \cdot 10^{-3} \cdot t + 3 \text{ ps}$	t = Messwert bei 1 MHz

Ruhla

Permanentes Laboratorium - Ruhla

Kalibrier- und Messmöglichkeiten (CMC)

,	Kallbil	er- unu	iviessillogiiclikei	ten (Civic)	1
Messgröße / Kalibriergegenstand	Messbere Messspa		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge					
Messschieber für Außen-,	0 mm bis	500 mm	VDI/VDE/DGQ 2618	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Innen- und Tiefenmaße *	> 500 mm bis	1000 mm	Blatt 9.1:2006	50 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Tiefenmessschieber *	0 mm bis	600 mm	VDI/VDE/DGQ 2618 Blatt 9.2:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Höhenmessschieber *	0 mm bis	600 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben mit	25 mm bis	100 mm	VDI/VDE/DGQ 2618	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
2-Punkt-Berührung *	> 100 mm bis	500 mm	Blatt 10.7:2010	4 μm + 10 · 10 ⁻⁶ · <i>l</i>	
	> 500 mm bis	1000 mm		5 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Verlängerung für Innen-	25 mm bis	500 mm	VDI/VDE/DGQ 2618	2 μm + 5 · 10 ⁻⁶ · <i>l</i>	
messschrauben mit 2-Punkt-Berührung *	> 500 mm bis	1000 mm	Blatt 10.7:2010	3,5 μm + 5 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	4 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Feinzeigermess- schrauben *	0 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 10.3:2002	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Einstellmaße für Bügelmessschrauben *	25 mm bis	500 mm	VDI/VDE/DGQ 2618 Blatt 4.4:2009	0,5 μm + 6 · 10 ⁻⁶ · <i>l</i>	
Hebelmessgeräte (Schnelltaster) für Außenmessung *	0 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 12.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Hebelmessgeräte (Schnelltaster) für Innenmessung *	2,5 mm bis	500 mm	VDI/VDE/DGQ 2618 Blatt 13.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Winkel 90° *	40 mm bis	500 mm	VDI/VDE/DGQ/DKD 2618 Blatt 7.1:2019	4 μ m + 6 \cdot 10 ⁻⁶ \cdot l_z	l_z = Schenkellänge
Winkelmesser *	0° bis	360°	VDI/VDE/DGQ 2618 Blatt 7.2:2008	1'	
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Messuhren mit Ziffernanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Feinzeiger *	bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,6 μm	
Fühlhebelmessgeräte *	bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	0,8 μm	
·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			·

Permanentes Laboratorium - Ruhla

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Lehrdorne * Durchmesser	2 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006	0,8 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Rundheitsabweichung	bis	20 μm		0,4 μm	
Geradheitsabweichung	bis	20 μm		1,0 μm	
Parallelitätsabweichung	bis	20 μm		2,0 μm	
Lehrringe * Durchmesser	3 mm bis	200 mm		0,8 μm + 10 · 10 ⁻⁶ · <i>d</i>	
Rundheitsabweichung	bis	20 μm		0,4 μm	
Geradheitsabweichung	bis	20 μm		1,0 μm	
Parallelitätsabweichung	bis	20 μm		2,0 μm	
Prüfstifte, Gewindeprüfstifte * Durchmesser	0,1 mm bis	20 mm	VDI/VDE/DGQ 2618 Blatt 4.2:2007	0,8 μm	
Rundheitsabweichung	bis	20 μm		0,4 μm	ab 1 mm Durchmesser
Geradheitsabweichung	bis	20 μm		1,0 μm	ab 1,5 mm Durchmesser
Parallelitätsabweichung	bis	20 μm		2,0 μm	ab 1,5 mm Durchmesser
Gewindelehren * eingängige zylindrische Außen- und Innenge- winde mit geradlinigen Flanken, symmetri- schem Profil und Nenn- profilwinkel 60°					
Außengewinde mit Nennsteigung 0,25 mm bis 5,5 mm Einfacher Flankendurchmesser	2 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006 Option 1	2,8 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Flankendurchmesser
Innengewinde mit Nennsteigung 0,5 mm bis 6 mm Einfacher Flankendurchmesser	4 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 4.9:2006 Option 1	2,8 μm + 10 · 10 ⁻⁶ · <i>d</i>	

Vor-Ort-Kalibrierung - Ruhla

Kalibrier- und Messmöglichkeiten (CMC)

				•
Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Koordinatenmesstechnik	•			
Messprojektoren, Messmikroskope *	0 mm bis 250 i	nm DKD-R 4-3 Blatt 18.1:2018 Kalibrieren der messtechnischen Eigenschaften von Koordinatenmessgeräten (KMG) nach DIN EN ISO 10360 und VDI/VDE 2617		Visuelle Antastung mittels Fadenkreuz <i>l</i> = gemessene Länge
		Bestimmung der Antast- abweichung PS-1D(OT) mittels eines Strichmaßstabes aus Glas gemäß VDI/VDE 2617 Blatt 6.1:2021	0,3 μm	
		Bestimmung der Längenmessabweichung E-1D(OT) mittels eines Strichmaßstabes aus Glas gemäß VDI/VDE 2617 Blatt 6.1: 2021		

Nürnberg

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	î .		Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messbereich / Messspanne		Verfahren	Messunsicherheit	beillerkungen
Länge				····cocanorene	
Parallelendmaße * aus Stahl nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm	VDI/VDE/DGQ 2618 Blatt 3.1:2004 In den Nennmaßen der Normale Messung der Abweichung des Mittenmaßes l_c vom Nennmaß l_n durch	Für das Mittenmaß: $0.08 \ \mu m + 0.8 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_0 und f_u vom Mittenmaß: $0.08 \ \mu m$	l = Länge des Maßes Messflächenqualität entsprechend den Festlegungen im QMH bzw. in den KA Für die kleinsten Mess-
Parallelendmaße * aus Keramik nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm	Unterschiedsmessung Messung der Abweichungen f_0 und f_u vom Mittenmaß durch 5-Punkte- Unterschiedsmessung	Für das Mittenmaß: $0.1 \ \mu m + 0.9 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_o und f_u vom Mittenmaß: $0.07 \ \mu m$	unsicherheiten sind Anschiebbarkeit und Anschubmerkmale beider Messflächen des Kalibriergegen- standes mit einer geeigneten Planglas-
Parallelendmaße * aus Wolframkarbid nach DIN EN ISO 3650:1999	0,5 mm bis	100 mm		Für das Mittenmaß: $0.1 \ \mu m + 0.9 \cdot 10^{-6} \cdot l$ Für die Abweichungen f_0 und f_0 vom Mittenmaß: $0.07 \ \mu m$	platte zu prüfen.
Parallelendmaße * aus Stahl nach DIN EN ISO 3650:1999	> 100 mm bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 3.1:2004 In den Nennmaßen, die von denen der Normale maximal 50 mm abweichen Messung der Abweichung des Mittenmaßes l_c vom Nennmaß l_n durch Unterschiedsmessung	Für das Mittenmaß: 0,2 μm + 0,7 · 10 ⁻⁶ · <i>l</i>	l = Länge des Maßes
Zylindrische Einstell- normale * Lehrringe Durchmesser	2 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006	0,6 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Ringes
Rundheitsabweichung	bis	20 μm		0,1 μm	ab 2 mm Durchmesser
Geradheits- und Parallelitätsabweichung	bis	20 μm		1 μm	ab 3 mm Durchmesser
Lehrdorne Durchmesser	1 mm bis	200 mm		0,6 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durch- messer des Dornes
Rundheitsabweichung	bis	20 μm		0,1 μm	ab 1 mm Durchmesser
Geradheits- und Paralleli- tätsabweichung	bis	20 μm		1 μm	ab 1,5 mm Durchmesser

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Prüfstifte, Gewindeprüfstifte Durchmesser	0,1 mm bis	20 mm	VDI/VDE/DGQ 2618 Blatt 4.2:2007	0,6 μm	
Rundheitsabweichung	bis	20 μm		0,1 μm	ab 1 mm Durchmesser
Geradheits- und Parallelitätsabweichung	bis	20 μm		1 μm	ab 1,5 mm Durchmesser
Einstellmaße für Bügelmessschrauben *	25 mm bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 4.4:2009	0,7 μm + 1,5 · 10 ⁻⁶ · <i>l</i>	l = Länge des Maßes
Grenzrachenlehren *	5 mm bis	160 mm	VDI/VDE/DGQ 2618 Blatt 4.7:2005	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Fühlerlehren	0,01 mm bis	2 mm	Trescal KA29 08.1/2021	3 μm	
Messschieber für Außen-,	0 mm bis	500 mm	VDI/VDE/DGQ 2618	30 μ m + 30 \cdot 10 ⁻⁶ \cdot l	<i>l</i> = gemessene Länge
Innen- und Tiefenmaße *	> 500 mm bis	1000 mm	Blatt 9.1:2006	50 μm + 30 \cdot 10 ⁻⁶ \cdot l	
Tiefenmessschieber *	0 mm bis	500 mm	VDI/VDE/DGQ 2618	30 μm + $30 \cdot 10^{-6} \cdot l$	
	> 500 mm bis	1000 mm	Blatt 9.2:2006	50 μm + 30 \cdot 10 ⁻⁶ \cdot l	
Höhenmessschieber *	0 mm bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Bügelmessschrauben *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.1:2001	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge 300 mm = Endwert des Messbereiches
	> 300 mm bis	600 mm		5 μm + 10 · 10 ⁻⁶ · <i>l</i>	600 mm = Endwert des Messbereiches
Bügelmessschrauben für Gewindemessungen Form D18 *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.2:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge300 mm = Endwert desMessbereiches
Feinzeigermessschrauben Form D13 *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.3:2002	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Einbaumessschrauben *	0 mm bis	50 mm	VDI/VDE/DGQ 2618 Blatt 10.4:2008	3 μm + 5 · 10 ⁻⁶ · <i>l</i>	50 mm = Endwert des Messbereiches
Tiefenmessschrauben mit Verlängerungen *	0 mm bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.5:2010	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	300 mm = Endwert des Messbereiches; Messelement i. d. R. 25 mm Messbereich
Innenmessschrauben mit 2-Punkt-Berührung *	25 mm bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 10.7:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Innenmessschrauben mit Messschnäbeln	5 mm bis	200 mm	Trescal KA16-6 01.1/2016	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	200 mm = Endwert des Messbereiches
Messschrauben für Innenquernuten	0 mm bis	100 mm	Trescal KA16-7 01.1/2016	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	100 mm = Endwert des Messbereiches
Messuhren mit Skalenanzeige *	bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Feinzeiger *	bis 3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	0,7 μm	
Fühlhebelmessgeräte *	bis 3,2 mm	bis 3,2 mm VDI/VDE/DGQ 2618 Blatt 11.3:2002		
Messuhren mit Ziffernanzeige *	bis 100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	in senkrechter Lage gemessen
Hebelmessgeräte für Außenmessungen * (Schnelltaster)	0 mm bis 200 mm	VDI/VDE/DGQ 2618 Blatt 12.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Hebelmessgeräte für Innenmessungen * (Schnelltaster)	2,5 mm bis 200 mm	VDI/VDE/DGQ 2618 Blatt 13.1:2005	7 μm + 10 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Gewindelehren * (ein- und mehrgängige zylindrische Außen- und Innengewinde mit geradlinigen Flanken, symmetrischem Profil)				
Flankendurchmesser an Außengewinden	1 mm bis 200 mm Steigung ≥ 0,25 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006 Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = Flanken- durchmesser
Flankendurchmesser an Innengewinden	3 mm bis 200 mm Steigung ≥ 0,5 mm bis 6 mm	VDI/VDE/DGQ 2618 Blatt 4.9:2006 Option 1	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	einfacher Flankendurchmesser (simple pitch diameter)
Gewindelehren * (ein- und mehrgängige zylindrische Außen- und Innengewin-de mit geradlinigen Flan-ken, symmetrischem und unsymmetrischem Profil)				
Außengewinde Flankendurchmesser	1 mm bis 150 mm Nenndurchmesser	VDI/VDE/DGQ 2618 Blatt 4.8:2006	3 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = Flankendurchmesser
Außendurchmesser, Kerndurchmesser		Option 1 bis 4 Scanningverfahren	3 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = Außen-/ Kerndurchmesser
Steigung bzw. Teilung	0,25 mm bis 8 mm		1 μm	
Gewindeprofilwinkel α	≥ 27°	(Angabe des Gewindeprofilwinkels α)	$(1,2 + 3 \text{ mm } / l_F)'$, jedoch nicht kleiner als 6'	$l_{ m F}$ = Flankenlänge
Innengewinde Flankendurchmesser	2,5 mm bis 160 mm Nenndurchmesser	VDI/VDE/DGQ 2618 Blatt 4.9:2006 Option 1 bis 4	3 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = Flankendurchmesser
Außendurchmesser, Kerndurchmesser		Scanningverfahren	3 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = Außen-/ Kerndurchmesser
Steigung bzw. Teilung	0,25 mm bis 8 mm		1 μm	
Gewindeprofilwinkel α	≥ 27°	(Angabe des Gewindeprofilwinkels α)	$(1,2 + 3 \text{ mm } / l_F)'$, jedoch nicht kleiner als 6'	$l_{ m F}$ = Flankenlänge

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Gleichstrom und Niederfrequenz				
Gleichspannung Messgeräte	0 mV bis < 330 mV 0,33 V bis < 3,3 V 3,3 V bis < 33 V 33V bis < 330 V 330 V bis 1020 V		$\begin{array}{llllllllllllllllllllllllllllllllllll$	U = Messwert
Gleichspannung Quellen	1 mV bis 200 mV > 0,2 V bis 2 V > 2 V bis 20 V > 20 V bis 200 V > 200 V bis 1000 V		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Gleichstromstärke Messgeräte	1 μA bis < 330 μA 0,33 mA bis < 3,3 mA 3,3 mA bis < 33 mA 33 mA bis < 330 mA 0,33 A bis < 1,1 A 1,1 A bis < 3 A 3 A bis < 11 A 11 A bis 20,5 A		0,20 · $10^{-3} \cdot I$ + 0,15 μ A 0,15 · $10^{-3} \cdot I$ + 0,20 μ A 0,15 · $10^{-3} \cdot I$ + 1,0 μ A 0,15 · $10^{-3} \cdot I$ + 20 μ A 0,30 · $10^{-3} \cdot I$ + 0,10 μ A 0,60 · $10^{-3} \cdot I$ + 0,10 μ A 0,70 · $10^{-3} \cdot I$ + 1,0 μ A 1,5 · $10^{-3} \cdot I$ + 2,0 μ A	I = Messwert
Gleichstromstärke Quellen	1 μA bis 200 μA > 0,2 mA bis 2 mA > 2 mA bis 20 mA > 20 mA bis 200 mA > 0,2 A bis 2 A > 2 A bis 20 A		$20 \cdot 10^{-6} \cdot I + 2,0 \text{ nA}$ $20 \cdot 10^{-6} \cdot I + 20 \text{ nA}$ $20 \cdot 10^{-6} \cdot I + 0,20 \mu\text{A}$ $70 \cdot 10^{-6} \cdot I + 2,0 \mu\text{A}$ $0,30 \cdot 10^{-3} \cdot I + 40 \mu\text{A}$ $0,70 \cdot 10^{-3} \cdot I + 1,0 m\text{A}$	
Gleichstromwiderstand Widerstände	1 Ω bis 2 Ω > 2 Ω bis 20 Ω > 20 Ω bis 200 Ω > 0,2 k Ω bis 2 k Ω > 2 k Ω bis 20 k Ω > 20 k Ω bis 200 k Ω > 0,2 M Ω bis 2 M Ω > 2 M Ω bis 20 M Ω > 20 M Ω bis 20 M Ω		$\begin{array}{rll} 30 \cdot 10^{-6} \cdot R + & 20 \ \mu\Omega \\ 20 \cdot 10^{-6} \cdot R + & 50 \ \mu\Omega \\ 20 \cdot 10^{-6} \cdot R + & 0,50 \ m\Omega \\ 20 \cdot 10^{-6} \cdot R + & 5,0 \ m\Omega \\ 20 \cdot 10^{-6} \cdot R + & 50 \ m\Omega \\ 20 \cdot 10^{-6} \cdot R + & 0,40 \ \Omega \\ 20 \cdot 10^{-6} \cdot R + & 5,0 \ \Omega \\ 40 \cdot 10^{-6} \cdot R + & 0,20 \ k\Omega \\ 0,30 \cdot 10^{-3} \cdot R + & 0,20 \ M\Omega \end{array}$	R = Messwert

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

"0 /	1	na wessmognenkei	1	l 5 .
Messgröße /	Messbereich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Kalibriergegenstand Gleichstromwiderstand	Messspanne	verialitett		R = Messwert
Messgeräte	1Ω bis $< 11 \Omega$		$0.10 \cdot 10^{-3} \cdot R + 15 \text{ m}\Omega$	K = Messwert
	11 Ω bis $< 33 \Omega$		$0.10 \cdot 10^{-3} \cdot R + 20 \text{ m}\Omega$	
	33 Ω bis < 0,11 k Ω		$0.10 \cdot 10^{-3} \cdot R + 20 \text{ m}\Omega$	
	$0,11 \text{ k}\Omega$ bis < $0,33 \text{ k}\Omega$		$0.15 \cdot 10^{-3} \cdot R + 25 \text{ m}\Omega$	
	$0,33 \text{ k}\Omega$ bis $< 1,1 \text{ k}\Omega$		$0.15 \cdot 10^{-3} \cdot R + 15 \text{ m}\Omega$	
	1,1 k Ω bis < 3,3 k Ω		$0.15 \cdot 10^{-3} \cdot R + 0.40 \Omega$	
	3,3 k Ω bis < 11 k Ω		$0.15 \cdot 10^{-3} \cdot R + 0.10 \Omega$	
	11 k Ω bis < 33 k Ω		$0.15 \cdot 10^{-3} \cdot R + 1.5 \Omega$	
	33 k Ω bis < 0,11 M Ω		$0.15 \cdot 10^{-3} \cdot R + 1.0 \Omega$	
	$0,11~\mathrm{M}\Omega~\mathrm{bis}$ < $0,33~\mathrm{M}\Omega$		$0.15 \cdot 10^{-3} \cdot R + 26 \Omega$	
	0,33 M Ω bis < 1,1 M Ω		$0.15 \cdot 10^{-3} \cdot R + 20 \Omega$	
	1,1 M Ω bis < 3,3 M Ω		$0.15 \cdot 10^{-3} \cdot R + 0.30 \text{ k}\Omega$	
	3,3 M Ω bis < 11 M Ω		$0.20 \cdot 10^{-3} \cdot R + 0.60 \text{ k}\Omega$	
	11 M Ω bis < 33 M Ω		$0.35 \cdot 10^{-3} \cdot R + 8.0 \text{ k}\Omega$	
	33 M Ω bis < 0,11 G Ω		$0.60 \cdot 10^{-3} \cdot R + 18 \text{ k}\Omega$	
	$0,11~\mathrm{G}\Omega$ bis < $0,33~\mathrm{G}\Omega$		$3.5 \cdot 10^{-3} \cdot R + 0.30 \text{ M}\Omega$	
	$0.33 \text{G}\Omega$ bis < $1.1 \text{G}\Omega$		$20 \cdot 10^{-3} \cdot R + 1.4 \text{ M}\Omega$	
Wechselspannung	1 mV bis < 33 mV	10 Hz bis 45 Hz	0,90 · 10 ⁻³ · <i>U</i> + 20 μV	U = Messwert
Messgeräte	1111 013 1351111	> 45 Hz bis 10 kHz	$0.20 \cdot 10^{-3} \cdot U + 20 \mu\text{V}$	0 - Mc33WCT
Wiessgerate		> 10 kHz bis 20 kHz	$0.25 \cdot 10^{-3} \cdot U + 20 \mu\text{V}$	
		> 20 kHz bis 50 kHz	$1.5 \cdot 10^{-3} \cdot U + 20 \mu\text{V}$	
		> 50 kHz bis 100 kHz	$4.5 \cdot 10^{-3} \cdot U + 30 \mu\text{V}$	
		> 100 kHz bis 500 kHz	$10 \cdot 10^{-3} \cdot U + 0,10 \text{ mV}$	
	33 mV bis < 330 mV	10 Hz bis 45 Hz	$0,40 \cdot 10^{-3} \cdot U + 30 \mu\text{V}$	
		> 45 Hz bis 10 kHz	$0.20 \cdot 10^{-3} \cdot U + 30 \mu\text{V}$	
		> 10 kHz bis 20 kHz	$0.20 \cdot 10^{-3} \cdot U + 30 \mu\text{V}$	
		> 20 kHz bis 50 kHz	$0.50 \cdot 10^{-3} \cdot U + 30 \mu\text{V}$	
		> 50 kHz bis 100 kHz	$1.0 \cdot 10^{-3} \cdot U + 80 \mu\text{V}$	
		> 100 kHz bis 500 kHz	$2.5 \cdot 10^{-3} \cdot U + 0.20 \text{ mV}$	
	0,33 V bis < 3,3 V	10 Hz bis 45 Hz	$0.40 \cdot 10^{-3} \cdot U + 0.10 \text{ mV}$	
		> 45 Hz bis 10 kHz	$0.20 \cdot 10^{-3} \cdot U + 0.10 \text{ mV}$	
		> 10 kHz bis 20 kHz	$0.25 \cdot 10^{-3} \cdot U + 0.10 \text{ mV}$	
		> 20 kHz bis 50 kHz	$0,40\cdot 10^{-3}\cdot U$ + 0,10 mV	
		> 50 kHz bis 100 kHz	$1.0 \cdot 10^{-3} \cdot U + 0.20 \text{ mV}$	
		> 100 kHz bis 500 kHz	$3.0 \cdot 10^{-3} \cdot U + 2.0 \text{ mV}$	
	3,3 V bis < 33 V	10 Hz bis 45 Hz	$0,40\cdot 10^{-3}\cdot U$ + 1,5 mV	
		> 45 Hz bis 10 kHz	$0,20\cdot 10^{-3}\cdot U$ + 1,0 mV	
			0,30 \cdot 10 ⁻³ \cdot U + 1,0 mV	
			$0.50 \cdot 10^{-3} \cdot U$ + 1.0 mV	
		> 50 kHz bis 100 kHz	1,5 \cdot 10 ⁻³ \cdot U + 2,5 mV	
	33 V bis < 330 V	45 Hz bis 1 kHz	$0.25 \cdot 10^{-3} \cdot U + 3.0 \text{ mV}$	
		> 1 kHz bis 10 kHz	0,30 \cdot 10 ⁻³ \cdot U + 10 mV	
		> 10 kHz bis 20 kHz	$0.30 \cdot 10^{-3} \cdot U + 10 \text{ mV}$	
		> 20 kHz bis 50 kHz	0,40 \cdot 10 ⁻³ \cdot U + 10 mV	
		> 50 kHz bis 100 kHz	2,5 \cdot 10 ⁻³ \cdot U + 60 mV	

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne					Erweite Messunsich		Bemerkungen
Wechselspannung Messgeräte	330 V bis	1020 V	45 Hz > 1 kHz > 5 kHz	bis	5 kHz	$0,40 \cdot 10^{-3} \cdot U + 0,30 \cdot 10^{-3} \cdot U + 0,40 \cdot 10^{-3} \cdot U +$	20 mV	U = Messwert
Wechselspannung Quellen	0,1 V bis	0,2 V	40 Hz > 100 Hz > 2 kHz	bis	2 kHz	$0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0$	20 μV	
	>0,2 V bis	2 V	40 Hz > 100 Hz > 2 kHz	bis	2 kHz	$0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U +$	60 μV	
	> 2 V bis	20 V	40 Hz > 100 Hz > 2 kHz	bis	2 kHz	$0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U +$	0,60 mV	
	> 20 V bis	200 V	40 Hz > 100 Hz > 2 kHz	bis	2 kHz	$0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U + 0,20 \cdot 10^{-3} \cdot U +$	6,0 mV	
	> 200 V bis	1050 V	40 Hz	bis	10 kHz	0,40 \cdot 10 ⁻³ \cdot U +	80 mV	
Wechselstromstärke Messgeräte	29 μA bis < 0,33 mA bis < 3,3 mA bis < 33 mA bis < 30,33 A bis 1,1 A bis 3 A bis 11 A bis	3,3 mA 33 mA	45 Hz	bis	1 kHz	$\begin{array}{c} 1,6 \cdot 10^{-3} \cdot I + \\ 1,5 \cdot 10^{-3} \cdot I + \\ 0,50 \cdot 10^{-3} \cdot I + \\ 0,50 \cdot 10^{-3} \cdot I + \\ 0,60 \cdot 10^{-3} \cdot I + \\ 0,70 \cdot 10^{-3} \cdot I + \\ 1,5 \cdot 10^{-3} \cdot I + \\ 2,0 \cdot 10^{-3} \cdot I + \end{array}$	0,60 μA 6,0 μA 60 μA 0,30 mA 0,40 mA 5,0 mA	I = Messwert
Wechselstromstärke Quellen	0,2 mA bis > 2 mA bis > 20 mA bis > 200 mA bis > 2 A bis	2 mA 20 mA 200 mA 2 A 20 A	45 Hz	bis	1 kHz	$0,50 \cdot 10^{-3} \cdot I + 0,50 \cdot 10^{-3} \cdot I + 0,50 \cdot 10^{-3} \cdot I + 0,80 \cdot 10^{-3} \cdot I + 1,1 \cdot 10^{-3} \cdot I +$	5,0 μA 50 μA 0,50 mA	

Verwendete Abkürzungen:

CMC Calibration and measurement capabilities (Kalibrier- und Messmöglichkeiten)

DGQ Deutsche Gesellschaft für Qualität e.V.
DIN Deutsches Institut für Normung e.V.

DKD Deutscher Kalibrierdienst

DKD-R Richtlinie des Deutschen Kalibrierdienstes,

herausgegeben von der Physikalisch-Technischen Bundesanstalt

Trescal KA Kalibrierverfahren der Trescal GmbH

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik e.V.

VDI Verein Deutscher Ingenieure e.V.

Gültig ab: 10.01.2024 Ausstellungsdatum: 10.01.2024

Seite 70 von 70

Akkreditierung

Die Deutsche Akkreditierungsstelle bestätigt mit dieser Teil-Akkreditierungsurkunde, dass das Kalibrierlaboratorium

Trescal GmbH Borsigstraße 11, 64291 Darmstadt

die Anforderungen gemäß DIN EN ISO/IEC 17025:2018 für die in der Anlage zu dieser Urkunde aufgeführten Konformitätsbewertungstätigkeiten erfüllt. Dies schließt zusätzliche bestehende gesetzliche und normative Anforderungen an das Kalibrierlaboratorium ein, einschließlich solcher in relevanten sektoralen Programmen, sofern diese in der Anlage zu dieser Urkunde ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Akkreditierung wurde gemäß Art. 5 Abs. 1 Satz 2 VO (EG) 765/2008, nach Durchführung eines Akkreditierungsverfahrens unter Beachtung der Mindestanforderungen der DIN EN ISO/IEC 17011 und auf Grundlage einer Bewertung und Entscheidung durch den eingesetzten Akkreditierungsausschuss ausgestellt.

Diese Teil-Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 10.01.2024 mit der Akkreditierungsnummer D-K-15015-01.

Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 21 Seiten.

Registrierungsnummer der Teil-Akkreditierungsurkunde: D-K-15015-01-02

Sie ist Bestandteil der Akkreditierungsurkunde D-K-15015-01-00. Mish de side

Berlin, 10.01.2024

Im Auftrag Dipl.-Wirtsch.-Ing. (BA) Tim Harnisch

Fachbereichsleitung

Vertactung

Diese Urkunde gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de).

Deutsche Akkreditierungsstelle

Standort Berlin Spittelmarkt 10 10117 Berlin Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die Deutsche Akkreditierungsstelle GmbH (DAkkS) ist die beliehene nationale Akkreditierungsstelle der Bundesrepublik Deutschland gemäß § 8 Absatz 1 AkkStelleG i. V. m. § 1 Absatz 1 AkkStelleGBV. Die DAkkS ist als nationale Akkreditierungsbehörde gemäß Art. 4 Abs. 4 VO (EG) 765/2008 und Tz. 4.7 DIN EN ISO/IEC 17000 durch Deutschland benannt.

Die Akkreditierungsurkunde ist gemäß Art. 11 Abs. 2 VO (EG) 765/2008 im Geltungsbereich dieser Verordnung von den nationalen Behörden als gleichwertig anzuerkennen sowie von den WTO-Mitgliedsstaaten, die sich in bilateralen- oder multilateralen Gegenseitigkeitsabkommen verpflichtet haben, die Urkunden von Akkreditierungsstellen, die Mitglied bei ILAC oder IAF sind, als gleichwertig anzuerkennen.

Die DAkkS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC).

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-K-15015-01-02 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 10.01.2024 Ausstellungsdatum: 10.01.2024

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-K-15015-01-00.

Inhaber der Teil-Akkreditierungsurkunde:

Trescal GmbH
Borsigstraße 11, 64291 Darmstadt

mit den Standorten

Trescal GmbH
Borsigstraße 11, 64291 Darmstadt

Trescal GmbH
Niederlassung Neustadt
Ernst-Abbe-Straße 18, 01844 Neustadt

Trescal GmbH
Niederlassung Esslingen
Limburgstraße 6, 73734 Esslingen

Trescal GmbH
Niederlassung Halver
Oststraße 7, 58553 Halver

Trescal GmbH
Niederlassung Braunschweig
Weinbergweg 36, 38106 Braunschweig

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite Seite 1 von 21

Trescal GmbH
Niederlassung Wetzlar
Friedenstraße 26, 35578 Wetzlar

Trescal GmbH Niederlassung Ruhla Bahnhofstraße 25, 99842 Ruhla

Trescal GmbH Niederlassung Nürnberg Poststraße 15a, 90471 Nürnberg

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese nachfolgend ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Kalibrierungen in den Bereichen:

Thermodynamische Messgrößen

Temperaturmessgrößen

- Temperaturanzeigegeräte und -simulatoren ^{a)}
- Direktanzeigende Thermometer ^{a)}
- Widerstandsthermometer a)
- Thermopaare, Thermoelemente ^{a)}
- Temperatur-Transmitter, Datenlogger
- Temperatur-Blockkalibratoren
- Klimaschränke (Temperatur) b)

Feuchtemessgrößen

- Messgeräte für relative Feuchte
- Klimaschränke (Feuchte) ^{b)}

Mechanische Messgrößen

- Kraft ^{a)}
- Druck ^{a)}
- Beschleunigung
- Drehmoment ^{a)}
- Waagen a)

Werkstoffprüfmaschinen (WPM)

- Härte (WPM) a)
- Kraft (WPM) b)
- Länge (WPM) b)
- Geschwindigkeit (WPM) b)
- Mechanische Arbeit (WPM) b)

Akustische Messgrößen

Für die mit * gekennzeichneten Messgrößen/Kalibriergegenstände ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierrichtlinien im flexiblen Akkreditierungsbereich.

a) auch als Vor-Ort-Kalibrierung

b) nur als Vor-Ort-Kalibrierung

Darmstadt

Permanentes Laboratorium - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen Temperaturanzeigegerät	−200 °C bis	−100 °C	DKD-R 5-5:2018	0,4 K	Kennlinien nach
е	>-100 °C bis	120 °C	mit Vergleichsstellen-	0,25 K	DIN EN 60584-4:2014
für Thermoelemente * Typ K und Typ N	> 120 °C bis	1000 °C	kompensation	0,35 K	
	> 1000 °C bis	1370 °C		0,5 K	
Тур Ј	−210 °C bis	−100 °C		0,35 K	
	> -100 °C bis	760 °C		0,25 K	
_	> 760 °C bis	1200 °C		0,3 K	

Vor-Ort-Kalibrierung - Darmstadt

Kalibrier- und Messmöglichkeiten (CMC)

					•
Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen					
Temperaturanzeigegeräte	−200 °C bis	−100 °C	DKD-R 5-5:2018	0,4 K	Kennlinien nach
für Thermoelemente *	> -100 °C bis	120 °C	mit Vergleichsstellen- kompensation	0,25 K	DIN EN 60584-4:2014
Typ K und Typ N	> 120 °C bis	1000 °C		0,35 K	
	> 1000 °C bis	1370 °C		0,5 K	
Тур J	−210 °C bis	−100 °C		0,35 K	
	> -100 °C bis	760 °C		0,25 K	
	> 760 °C bis	1200 °C		0,3 K	

Neustadt

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		ereich / spanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Härte (WPM) *					
für Härteskala Shore A	0 Shore 1	ois 100 Shore	DIN ISO 48-9:2021	1 Shore	direkte Messung mit Bezugsnormal für Weg und Kraft
Messweg	0 mm	ois 2,5 mm		2 μm	
Federkraft	0 mN 1	ois 8050 mN		2 mN	
Bohrungsdurchmesser der Druckplatte d_1	2,9 mm l	ois 3,1 mm		5 μm	
Schaftdurchmesser des Eindringkörpers d_2	1,1 mm l	nis 1,4 mm		5 μm	
oberer Kegeldurchmesser des Kegelstumpfes d ₃	0,78 mm l	ois 0,8 mm		3 μm	
Durchmesser der Druckplatte <i>D</i>	17,5 mm l	is 18,5 mm		10 μm	
Kegelwinkel des Eindringkörpers α	34° 45' 1	ois 35° 15'		4'	
Shore D	10 Shore	ois 100 Shore		1 Shore	
Messweg	0 mm l	ois 2,5 mm		2 μm	
Federkraft	0 mN 1	ois 44500 mN		3 mN	
Bohrungsdurchmesser der Druckplatte d_1	2,9 mm l	ois 3,1 mm		5 μm	
Schaftdurchmesser des Eindringkörpers d_2	1,1 mm l	ois 1,4 mm		5 μm	
Radius des Eindring- körpers r	0,09 mm l	ois 0,11 mm		3 µm	
Durchmesser der Druckplatte <i>D</i>	17,5 mm l	ois 18,5 mm		10 μm	
Kegelwinkel des Eindringkörpers α	29° 45' l	ois 30° 15'		4'	
IRHD - N	30 IRHD-N	ois 95 IRHD-N		1 IRHD - N	
Messweg	0 mm l	ois 1,8 mm		2 μm	
Bohrungsdurchmesser der Druckplatte d_1	5 mm 1	ois 7 mm		10 μm	
Kugeldurchmesser des Eindringkörpers d_2	2,49 mm l	ois 2,51 mm		3 µm	
Durchmesser der Druckplatte <i>D</i>	19 mm	ois 21 mm		20 μm	
Vorkraft auf den Eindringkörper $F_{ m c}$	0,28 N I	ois 0,32 N		3 mN	

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess	ber	eich / anne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
IRHD - N Gesamtkraft auf den Eindringkörper F_t	5,67 N	bis	5,73 N	DIN ISO 48-9:2021	3 mN	direkte Messung mit Bezugsnormal für Weg und Kraft
Kraft auf der Druckplatte $F_{ m f}$	6,8 N	bis	9,8 N		3 mN	
IRHD - L	10 IRHD-L	bis	35 IRHD-L		1 IRHD - L	
Messweg	0 mm	bis	3,2 mm		2 μm	
Bohrungsdurchmesser der Druckplatte d_1	9 mm	bis	11 mm		10 μm	
Kugeldurchmesser des Eindringkörpers d_2	4,99 mm	bis	5,01 mm		3 μm	
Durchmesser der Druckplatte <i>D</i>	21 mm	bis	23 mm		20 μm	
Vorkraft auf den Eindringkörper $F_{ m c}$	0,28 N	bis	0,32 N		3 mN	
Gesamtkraft auf den Eindringkörper $F_{ m t}$	5,67 N	bis	5,73 N		3 mN	
Kraft auf der Druckplatte $F_{ m f}$	6,8 N	bis	9,8 N		3 mN	
IRHD - M	30 IRHD-M	bis	95 IRHD-M		4,5 IRHD - M	
Messweg	0 mm	bis	0,3 mm		2 μm	
Bohrungsdurchmesser der Druckplatte d_1	0,85 mm	bis	1,15 mm		5 μm	
Kugeldurchmesser des Eindringkörpers d ₂	0,39 mm	bis	0,4 mm		3 μm	
Durchmesser der Druckplatte <i>D</i>	3,2 mm	bis	3,5 mm		10 μm	
Vorkraft auf den Eindringkörper $F_{ m c}$	7,8 mN	bis	8,8 mN		0,3 mN	
Gesamtkraft auf den Eindringkörper $F_{ m t}$	152,3 mN	bis	154,3 mN		0,3 mN	
Kraft auf der Druckplatte $F_{ m f}$	205 mN	bis	265 mN		0,3 mN	
Druck *		_				_
Absolutdruck $p_{ m abs}$	0 bar	bis	2 bar	DKD-R 6-1:2014	0,15 mbar	Druckmedium: Gas
	> 2 bar		121 bar	Kalibriermethode ab 2 bar: $p_{ m abs}$ = $p_{ m e}$ + $p_{ m amb}$	$6.3 \cdot 10^{-5} \cdot p_{ m abs}$ + 0,45 mbar	Die Messunsicherheit des Barometers ist noch zu berücksichtigen.
	1 bar; 2 bar	bis	61 bar	DKD-R 6-1:2014	$6.8 \cdot 10^{-5} \cdot p_{\mathrm{abs}}$ + 0.35 mbar	Druckmedium: Öl Die Messunsicherheit des Barometers ist
	> 61 bar	bis	1201 bar	Kalibriermethode: $p_{\text{abs}} = p_{\text{e}} + p_{\text{amb}}$	9,7 · 10^{-5} · p_{abs} + 5,8 mbar	noch zu berücksichtigen.

Permanentes Laboratorium - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Negativer und positiver	-1 bar bis	1 bar	DKD-R 6-1:2014	0,11 mbar	Druckmedium: Gas
Überdruck $p_{ m e}$	> 1 bar bis	120 bar		6,3 \cdot 10 ⁻⁵ \cdot $p_{\rm e}$ + 0,45 mbar	
Positiver Überdruck $p_{ m e}$	> 1 bar bis	60 bar		6,8 \cdot 10 ⁻⁵ \cdot $p_{\rm e}$ + 0,35 mbar	Druckmedium: Öl
	> 60 bar bis	1200 bar		9,7 \cdot 10 ⁻⁵ \cdot $p_{\rm e}$ + 5,8 mbar	
Waagen *					
Nichtselbsttätige elektronische Waagen	bis	600 g	EURAMET/cg-18/v.4.0:2015	2 · 10-6	mit Gewichtsstücken nach OIML R 111-1:2004 gemäß der Klasse E ₂
	bis	180 kg		2 · 10-5	mit Gewichtsstücken nach OIML R 111-1:2004 gemäß der Klasse F ₁

Vor-Ort-Kalibrierung - Neustadt

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Waagen *				
Nichtselbsttätige elektronische Waagen	bis 600 g	EURAMET/cg-18/v. 4.0:2015	2 · 10 ⁻⁶	mit Gewichtsstücken nach OIML R 111-1:2004 gemäß der Klasse E ₂
	bis 180 kg		2 · 10-5	mit Gewichtsstücken nach OIML R 111-1:2004 gemäß der Klasse F ₁

Esslingen

Permanentes Laboratorium - Esslingen

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa	eich /	Messbe	_	ungen /	Erweiterte Messunsicherheit	Bemerkungen
Druck * Überdruck $p_{\rm e}$	0 bar bis > 1,6 bar bis > 10 bar bis > 172 bar bis	1,6 bar 10 bar 172 bar 500 bar	DKD-R 6-	·1:201	4	0,18 mbar 1,8 mbar 18 mbar $2\cdot 10^{-4}\cdot p_{e}$	Druckmedium: Gas
Absolutdruck $p_{ m abs}$	1 bar bis > 1,6 bar bis > 10 bar bis	1,6 bar 10 bar 172 bar				0,18 mbar 1,8 mbar 18 mbar	Druckmedium: Gas Die Messunsicherheit des Barometers ist noch zu berücksich- tigen
Beschleunigung	über die Schwir beschleunigung Tabelle genann	Für sinusförmige Anregung und schmalbandige Auswerteverfahren (Sinus-Ap über die Schwingfrequenz ein eindeutiger Zusammenhang zwischen der Amp beschleunigung, Schwinggeschwindigkeit und Schwingweg. Aus diesem Grun Tabelle genannten Messgröße Beschleunigung auch Kalibrierungen von Schwund Schwingwegaufnehmern in den entsprechend mit der Frequenz umgereinen möglich					
Beschleunigung *			Bla	(D-R 3 tt 3:20 sanre	020		
	0,1 m/s ² bis	10 m/s ²	0,4 Hz	bis	160 Hz	1 % / 1,4°	Aufnehmermasse bis 1 kg Wegamplitude bis 150 mm pk-pk Kalibrierergebnis: - komplexer Über- tragungskoeffizient (Betrag/Phase)
	10 m/s ² bis	500 m/s ²	10 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1 % / 1° 1,5 % / 1,5° 2,5 % / 2°	Aufnehmermasse bis 0,3 kg Wegamplitude bis 10 mm pk-pk Kalibrierergebnis: - komplexer Über- tragungskoeffizient (Betrag/Phase)
Messverstärker *	Eingangsla	dung	DKD-	R 3-2:	2019		
Ladungsverstärker Übertragungskoeffizient	1 pC bis	10 nC	0,2 Hz 1 Hz > 5 kHz > 10 kHz > 20 kHz	bis bis bis bis	< 1 Hz 5 kHz 10 kHz 20 kHz 50 kHz	0,5 % / 0,7° 0,4 % / 0,5° 0,4 % / 1° 0,6 % / 2° 1 % / 5°	Komplexer Verstärkungs- koeffizient (Betrag / Phase)
Spannungs- und IEPE Verstärker Übertragungskoeffizient	0,001 V/V bis	1000 V/V	0,2 Hz > 1 Hz > 20 kHz	bis bis bis	1 Hz 20 kHz 50 kHz	0,4 % / 0,7° 0,3 % / 0,5° 1 % / 5°	

Permanentes Laboratorium - Esslingen

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messsp	eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Schwingungskalibratoren * Beschleunigungsamplitude für den Frequenzbereich von 20 Hz – 1 kHz	1 m/s² bis	20 m/s²	DIN ISO 16063- 44:2019	1,1 %	Betrag
Frequenz	20 Hz bis	1 kHz		$5 \cdot 10^{-4} \cdot f$, jedoch nicht kleiner als 0,1 Hz	f = Messfrequenz
Klirrfaktor	20 Hz bis	1 kHz		10 % (THD)	THD: Total Harmonic Distortion
Drehmoment * handbetätigte Drehmoment- schraubwerkzeuge, auslösend / anzeigend	1 N·m bis	1000 N·m	DIN EN ISO 6789-2:2017	1 · 10-2	
Kraft * Kraftaufnehmer Kraftmessgeräte	50 N bis	250 kN	DIN EN ISO 376:2011, DKD-R 3-3:2018	9 · 10-4	Zug und Druckkraft, 50 kN- und 250-kN-K-BNME mit Referenzaufnehmern 500 N, 2 kN, 10 kN, 50 kN, 250 kN
Handkraftmessgeräte	50 N bis	1000 N	DKD-R 3-3:2018 Ablauf C	0,5 %	Zug- und Druckkraft, 50-kN- und 250-kN-K-BNME mit Referenzkraftauf- nehmern 500 N, 2 kN
Akustische Messgrößen*					
Freifeld- Betriebsübertragungsmaß von¼" und½"- Messmikrofonen	125 Hz bis 250 Hz bis > 8 kHz bis > 10 kHz bis	< 250 Hz 8 kHz 10 kHz 20 kHz	DIN EN 61094-8:2013 Substitutionsmethode in einer reflexions- armen Kammer mit ½"-Normalmikrofon bei Schalldruckpegel 74 dB bis 94 dB	0,35 dB 0,35 dB 0,45 dB 0,50 dB	
Freifeldfrequenzgang von Schallpegelmessern	125 Hz bis 250 Hz bis > 8 kHz bis > 10 kHz bis	< 250 Hz 8 kHz 10 kHz 20 kHz		0,50 dB 0,40 dB 0,50 dB 0,60 dB	
Druck- Betriebsübertragungsmaß von½"-Messmikrofonen	31,5 Hz bis > 5 kHz bis > 10 kHz bis	5 kHz 10 kHz 16 kHz	DIN EN 61094-5:2016 Vergleichsmessung in einem elektro- akustischen Kuppler	0,25 dB 0,40 dB 0,50 dB	
Schalldruckpegel von Schallkalibratoren	250 Hz;	1 kHz	DIN EN IEC 60942:2018 94 dB; 114 dB; 124 dB	0,15 dB	

Vor-Ort-Kalibrierung - Esslingen

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Messbereich /	Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messspanne	Verfahren	Messunsicherheit	
Drehmoment * handbetätigte Drehmoment- schraubwerkzeuge, auslösend / anzeigend	1 N·m bis 1000 N·m	DIN EN ISO 6789-2:2017	1 · 10-2	

Halver

Permanentes Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		-	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Drehmoment * Handbetätigte Drehmomentschraub- werkzeuge	2 N·m	bis	3 kN·m	DIN EN ISO 6789-2:2017	1 · 10-2	
Kraft *						
Kraftmessgeräte	10 N	bis	50 kN	DKD-R 3-3:2018	0,24 %	mit Kraftmessgeräten in Zug- und Druckkraftrichtung
Handkraftmessgeräte	1 N	bis	600 N	VDI/VDE 2624 Blatt 2.1:2008	0,2 %	mit Belastungs- körpern in Zug- und Druckkraftrichtung
	10 N	bis	5 kN		0,2 %	mit Kraftmessgeräten in Zug- und Druckkraftrichtung
Härte (WPM) *						
Shore A, D	0 Shore	bis	100 Shore	DIN ISO 48-9:2021 ASTM D 2240:2015	1,5 Shore	
Radius		bis	0,1 mm		1,5 · 10^{-5} · R + 2,6 μ m	R = gemessener Radius
Durchmesser	0,35 mm	bis	22 mm		1,5 · 10 ⁻⁵ · D + 2,6 μm	D = gemessener Durchmesser
Winkel	29°	bis	36°		0,1°	
Messweg	0 mm	bis	3 mm		0,15 %; jedoch nicht kleiner als 0,5 μm	
Federkraft	0,55 N	bis	8,05 N		0,2 %; jedoch nicht kleiner als 2 mN	
	4,45 N	bis	44,5 N		0,2 %; jedoch nicht kleiner als 8 mN	
Masse auf der Druckplatte	0,1 kg	bis	5 kg		0,2 %; jedoch nicht kleiner als 1 g	

Permanentes Laboratorium - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen *					
direktanzeigende Thermometer mit	−35 °C bis	150 °C	DKD-R 5-1:2018 im Flüssigkeitsbad	0,6 K	Vergleich mit Referenz-
Widerstandssensor	50 °C bis	600 °C	DKD-R 5-1:2018 im Blockkalibrator	3,1 K	thermometern
direktanzeigende Thermometer mit	−35 °C bis	150 °C	DKD-R 5-3:2018 im Flüssigkeitsbad	1,0 K	Vergleich mit Referenz-
Thermoelementsensor	50 °C bis 600 °C	600 °C	DKD-R 5-3:2018 im Blockkalibrator	4,5 K	thermometern
Temperaturanzeigegeräte für Thermoelemente			DKD-R 5-5:2018 ohne Vergleichsstellen-		Kennlinie nach DIN EN 60584-1:2014
Тур Ј	-200 °C bis	1200 °C	kompensation	0,5 K	
Тур К	-200 °C bis	1200 °C		0,6 K	
Тур N	-200 °C bis	1200 °C		0,6 K	
Тур Т	-200 °C bis	400 °C		0,6 K	
Тур Е	-200 °C bis	1000 °C		0,6 K	
Тур С	0 °C bis	1200 °C		0,6 K	
Тур R	0 °C bis	1200 °C		0,6 K	
Тур S	0 °C bis	1200 °C		0,6 K	
Тур В	0 °C bis	1200 °C		0,6 K	

Vor-Ort-Kalibrierung - Halver

Kalibrier- und Messmöglichkeiten (CMC)

			U	,	
Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Kraft *					
Handkraftmessgeräte	1 N bis	600 N	VDI/VDE 2624 Blatt 2.1:2008	0,2 %	mit Belastungskörpern in Zug- und Druckkraft- richtung
Länge (WPM) * Längenänderungsmess- einrichtungen von Werk-	0 mm bis	60 mm	DIN EN ISO 9513:2013 ASTM E 83:2016	0,15 %; jedoch nicht kleiner als 0,5 μm	Messprinzip: inkremental
stoffprüfmaschinen nach DIN 51220:2003	0 mm bis	1500 mm	ASTM E 399:2020 ASTM E 2309/ E 2309M:2020	0,3 %; jedoch nicht kleiner als 3 μm	

Vor-Ort-Kalibrierung - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messspa	eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Eindruckmessein- richtungen von Härteprüfmaschinen	0 mm bis	20 mm	ISO 6506-2:2017 DIN EN ISO 6506-2:2018 ASTM E 10:2018 ISO 6507-2:2018 DIN EN ISO 6507-2:2018 ASTM E 384:2017 ASTM E 92:2017 ISO 6508-02:2015 DIN EN ISO 6508-2:2015 ASTM E 18:2022 DIN EN ISO 2039-1:2003 DIN EN ISO 2039-2:2000 ASTM F 36:2015 ASTM D 785:2008	0,15 %; jedoch nicht kleiner als 0,5 μm	Messprinzip: Objektmikrometer im Auflicht
Tiefenmesseinrichtungen von Härteprüfmaschinen	0 mm bis	1 mm	DIN EN ISO 6508-2:2015 ASTM E 18:2022	0,3 μm	Messprinzip: inkremental, DMS
Kraft (WPM) Kraftmesseinrichtungen	10 N bis	600 kN	ISO 7500-1:2018 DIN EN ISO 7500-1:2018	0,12 %	mit Kraftmessgeräten in Zugkraftrichtung
von Werkstoffprüf- maschinen	1 N bis	1000 kN	DIN EN ISO 7500-1 Beiblatt 1:2022 Beiblatt 2:2022	0,12 %	mit Kraftmessgeräten in Druckkraftrichtung
	0,1 N bis	100 N	Beiblatt 3:1999 Beiblatt 4:2013 ISO 7500-2:2006 DIN EN ISO 7500-2:2007 ASTM E 4:2021 ISO 6506-2:2017 DIN EN ISO 6506-2:2019 ASTM E 10:2018 ISO 6507-2:2018 DIN EN ISO 6507-2:2018 ASTM E 384:2017 ASTM E 92:2017 ISO 6508-2:2015 DIN EN ISO 6508-2:2015 ASTM E 18:2022 DIN EN ISO 2039-1:2003 DIN EN ISO 2039-1:2003 DIN EN ISO 2039-2:2000 ASTM F 36:2015 ASTM D 785:2008 ASTM E 1012:2019 ASTM E 467:2021 ISO 23788:2012	0,10 %	mit Belastungskörpern in Zug- und Druckkraft- richtung
Geschwindigkeit (WPM) Traversengeschwindigkeit	0,1 mm/min bis	20 mm/min	ASTM E 2658:2015	1,5 %	Messprinzip: Start/Stop- Methode des Weges und der Zeit

Vor-Ort-Kalibrierung - Halver

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspai	•	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Mechanische Arbeit (WPM) Pendelschlagwerke und Schlageinrichtungen	0,2 J bis	750 J	DIN EN ISO 148-2:2017 DIN 51222:2017	Kraft: 0,12 % Pendellänge: 0,3 mm Winkel: 0,05° Zeit: 0,2 s	Die Messunsicherheit wird berechnet für: 1. Lage des Schwingungsmittelpunktes 2. potentielle Energie 3. Abweichung der angezeigten Energie 4. indirekte Kalibrierung mit Referenzproben
Härte (WPM) Härteprüfmaschinen nach	60 HBW bis	650 HBW	DIN EN ISO 6506-2:2019 ASTM E 10:2018	2 % HBW	Die angegebenen Werte der Messunsicherheit
Brinell-, Vickers- und Rockwellverfahren	100 HV bis (Härteska HV5 bis HV (Härteska HV0,01 bis	100) Ien	ISO 6507-2:2018 DIN EN ISO 6507-2:2018 ASTM E 384:2017 ASTM E 92:2017	1 % HV, jedoch nicht < 1,5 \cdot $U_{\rm CRM}$ 2 % HV, jedoch nicht < 1,5 \cdot $U_{\rm CRM}$	gelten für die indirekte Kalibrierung mit Härte- vergleichsplatten. Die Messunsicherheit der einzelnen
	20 HRA bis	93 HRA	ISO 6508-2:2015	0,5 HRA	Parameter der direkten
	20 HRB bis	115 HRB	DIN EN ISO 6508-2:2015	0,8 HRB	Kalibrierung wird separat angegeben.
	10 HRC bis	70 HRC	ASTM E 18:2022	0,5 HRC	
	70 HR15N bis	94 HR15N		0,6 HR15N	$U_{ m CRM}$ = Kalibrierun- sicherheit der Härte-
	42 HR30N bis	86 HR30N		0,6 HR30N	vergleichsplatte
	20 HR45N bis	77 HR45N		0,6 HR45N	
	67 HR15T bis	93 HR15T		1,2 HR15T	
	29 HR30T bis	82 HR30T		1,2 HR30T	
	15 HR45T bis	72 HR45T		1,2 HR45T	
Temperaturmessgrößen *					
Temperaturanzeigegeräte			DKD-R 5-5:2018		Kennlinie nach
für Thermoelemente	-200 °C bis	1200 °C	ohne Vergleichsstellen- kompensation	0,5 K	DIN EN 60584-1:2014
Тур J Тур К	-200 °C bis	1200 °C	,	0,5 K	
Typ N	-200 °C bis	1200 °C		0,6 K	
Тур Т	-200 °C bis	400 °C		0,6 K	
Typ E	-200 °C bis	1000 °C		0,6 K	
Тур С	0 °C bis	1200 °C		0,9 K	
Typ R	0 °C bis	1200 °C		0,6 K	
Typ S	0 °C bis	1200 °C		0,6 K	
Тур В	0 °C bis	1200 °C		0,6 K	

Braunschweig

Permanentes Laboratorium - Braunschweig

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa	eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen	ivic333pc	iiic	Veriamen	Wiessansienerneit	
Widerstandsthermo- meter, direktanzeigende	0,01°	С	Trescal BS KA20a 01.1/2021 Wassertripelpunkt	15 mK	Kalibrierung an Fixpunkten
Thermometer und Transmitter mit Wider- standssensoren	29,7646	°C	Trescal BS KA20b 01.1/2021 Galliumfixpunkt	15 mK	
Widerstandsthermo-	−100 °C bis	−20 °C	DKD-R 5-1:2018	0,25 K	Vergleich mit
meter,	> -20 °C bis	140 °C	im Blockkalibrator	0,05 K	Referenzthermometer
direktanzeigende Thermometer und	> 140 °C bis	300°C		0,2 K	
Transmitter mit Wider-	> 300 °C bis	660°C		0,7 K	
standsthermometer- sensoren *	-40°C bis	150°C	DKD-R 5-1:2018 im Klimaschrank	0,4 K	
Direktanzeigende	−100°C bis	140°C	DKD-R 5-3:2018	0,5 K	Vergleich mit
Thermometer mit Nichtedelmetall-	> 140 °C bis	300°C	im Blockkalibrator	0,5 K	Referenzthermometer
Thermoelement- sensoren *	> 300 °C bis	660°C		0,9 К	
	500°C bis	900°C	DKD-R 5-3:2018	1,6 K	
	> 900 °C bis	1100°C	im Rohrofen	2,0 K	
	> 1100 °C bis	1200°C		3,0 K	
	-40°C bis	150°C	DKD-R 5-3:2018 im Klimaschrank	0,5 K	
Nichtedelmetall-	−100 °C bis	140°C	DKD-R 5-3:2018	1,0 K	Vergleich mit
Thermoelemente und Transmitter mit Nicht-	140°C bis	300°C	im Blockkalibrator	1,0 K	Referenzthermometer
edelmetall-Thermo- elementsensoren *	> 300 °C bis	660°C		1,4 K	
	500°C bis	700°C	DKD-R 5-3:2018	2,3 K	
	> 700 °C bis	900°C	im Rohrofen	2,4 K	
	> 900 °C bis	1100°C		2,7 K	
	> 1100 °C bis	1200°C		3,5 K	

Permanentes Laboratorium - Braunschweig

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		ssbere essspai	•	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Edelmetall-Thermo-	200°C	bis	300°C	DKD-R 5-3:2018	0,5 K	Vergleich mit
elemente, direktanzeigende	> 300 °C	bis	660°C	im Blockkalibrator	0,9 K	Referenzthermometer
Thermometer mit Edelmetall-Thermo-	500°C	bis	700°C	DKD-R 5-3:2018	1,2 K	
elementsensoren und	> 700 °C	bis	900°C	im Rohrofen	1,3 K	
Transmitter mit Thermoelement-	> 900 °C	bis	1100°C		1,8 K	
sensoren Typ S und Typ R *	> 1100 °C	bis	1200°C		2,9 K	
Blockkalibratoren *	-100 °C	bis	300°C	DKD-R 5-4:2018	0,35 K	Vergleich mit
	> 300 °C	bis	660°C		0,65 K	Referenzthermometer
	> 660 °C	bis	800°C		2,5 K	
	> 800 °C	bis	1000°C		4,0 K	
	> 1000 °C	bis	1200°C		5,0 K	
Thermohygrographen	10°C	bis	40°C	Trescal BS KA24 01.1/2021 im Klimaschrank	1,2 K	Vergleich mit Referenzthermometer
Feuchtemessgrößen				IIII KIIIIIasciii aiik		
relative Feuchte	20 %	bis	50 %	DKD-R 5-8:2019	1,5 %	Vergleich mit Tau-
Hygrometer zur direkten Erfassung der	> 50 %	bis	80 %	im Klimaschrank	2,0 %	punktspiegelhygro- meter
relativen	> 80 %	bis	90 %	Temperaturbereich: 20°C bis 80°C	2,6 %	meter
Feuchte *	20 %	bis	50 %	DKD-R 5-8:2019	1,0 %	ausgedrückt als Absolutwert der
	> 50 %	bis	90 %	im Feuchtegenerator _ bei 23°C	1,5 %	
Thermohygrographen *	20 %	bis	90 %	DKD-R 5-8:2019 im Klimaschrank Temperaturbereich: 20°C bis 80°C	5,0 %	

Vor-Ort-Kalibrierung - Braunschweig

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen					
Widerstandsthermo-	−100°C bis	−20 °C	DKD-R 5-1:2018	0,5 K	Vergleich mit
meter, Transmitter	> -20 °C bis	140°C	im Blockkalibrator	0,1 K	Referenzthermometer
und direktanzeigende Thermometer mit	> 140 °C bis	300°C		0,4 K	
Widerstandssensoren *	> 300 °C bis	660°C		1,4 K	
Transmitter und direktanzeigende	−100°C bis	140°C	DKD-R 5-3:2018 im Blockkalibrator	1,0 K	Vergleich mit Referenzthermometer
Thermometer mit Thermoelement-	> 140 °C bis	300°C	III Biochhail Biacoi	1,0 K	
sensoren *	> 300 °C bis	660°C		1,8 K	
Klimaschränke mit	−90°C bis	10 °C	DKD-R 5-7:2018	1,7 K	Vergleich mit
Umluft *	> 10 °C bis	40 °C	Methode A oder B	1,0 K	Referenzthermometer
	> 40 °C bis	250°C		1,7 K	
Klimaschränke ohne	−90°C bis	10 °C	DKD-R 5-7:2018	3,0 K	Vergleich mit
Umluft *	> 10 °C bis	40 °C	Methode A oder B	2,2 K	Referenzthermometer
	> 40 °C bis	250°C		5,0 K	
Messorte in Klima-	−90 °C bis	10 °C	DKD-R 5-7:2018	1,7 K	Vergleich mit
schränken mit Umluft *	> 10 °C bis	40 °C	Methode C	1,0 K	Referenzthermometer
	> 40 °C bis	250°C		1,7 K	
Messorte in Klima-	−90 °C bis	10 °C	DKD-R 5-7:2018	1,7 K	Vergleich mit
schränken ohne Umluft *	> 10 °C bis	40 °C	Methode C	1,0 K	Referenzthermometer
- Official Control	> 40 °C bis	250°C		1,7 K	
Feuchtemessgrößen Klimaschränke mit Umluft *			DKD-R 5-7:2018		Vergleich mit kapazitivem Sensor
Official	20 % bis	90 %	Methode A oder B Lufttemperatur: 10 °C bis 20 °C	3,5 %	für relative Feuchte
	10 % bis	90 %	DKD-R 5-7:2018 Methode A oder B Lufttemperatur: 20 °C bis 90 °C	3,5 %	Messunsicherheit ausgedrückt als Absolutwert der relativen Feuchte
Messorte in Klima- schränken mit Umluft *	20 % bis	90 %	DKD-R 5-7:2018 Methode C Lufttemperatur: 10 °C bis 20 °C	3,5 %	
	10 % bis	90 %	DKD-R 5-7:2018 Methode C Lufttemperatur: 20°C bis 90°C	3,5 %	

Wetzlar

Permanentes Laboratorium - Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		bereio sspan	-	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen						
Widerstandsthermometer, direktanzeigende	−50 °C	bis	250 °C	DKD-R 5-1:2018 im Ölbad	50 mK	Vergleich mit Referenz-
Thermometer mit	−80 °C	bis	−45 °C	DKD-R 5-1:2018	0,3 K	thermometer
Widerstandssensor *	> -45 °C	bis	100 °C	im Blockkalibrator	0,1 K	
	> 100 °C	bis	650 °C		0,2 K	
Thermoelemente, direktanzeigende	−50 °C	bis	250 °C	DKD-R 5-3:2018 im Ölbad	0,3 K	Vergleich mit Referenz-
Thermometer mit	−80 °C	bis	−45 °C	DKD-R 5-3:2018	0,5 K	thermometer
Thermoelementsensor *	> -45 °C	bis	100 °C	im Blockkalibrator	0,4 K	
	> 100 °C	bis	650 °C		0,5 K	
Temperatur-Anzeigegeräte für Widerstands-thermometer *	−200 °C	bis	850 °C	DKD-R 5-5:2018	30 mK	Kennlinie nach DIN EN 60751:2009
Simulatoren für Wider- standsthermometer *	−200 °C	bis	850 °C		25 mK	
Temperatur-Anzeigegeräte für Thermoelemente *	−200 °C	bis	−50 °C	DKD-R 5-5:2018 ohne Vergleichs-	0,2 K	Kennlinie nach DIN EN 60584:2014
Typ J, T, E, K, N	> -50 °C	bis	1300 °C	stellenkompensation	0,15 K	
Typ R, S	0 °C	bis	100 °C		0,6 K	
	> 100 °C	bis	400 °C		0,5 K	
	> 400 °C	bis	1760 °C		0,3 K	
Тур В	600 °C	bis	700 °C		0,6 K	
	> 700 °C	bis	1100 °C		0,4 K	
	> 1100 °C	bis	1800 °C		0,3 K	
Temperatur-Anzeigegeräte				DKD-R 5-5:2018		Kennlinie nach
für Thermoelemente *	-200 °C	bis	1300 °C	mit Vergleichsstellen-	0,35 K	DIN EN 60584:2014
Typ J, T, E, K, N				kompensation	<u> </u>	
Typ R, S		bis	100 °C		0,7 K	
		bis	1800 °C		0,5 K	
Тур В		bis	700 °C		0,6 K	
	1	bis	1200 °C		0,5 K	
Dl. *	> 1200 °C	bis	1800 °C		0,4 K	
Druck * Positiver Überdruck	0 bar	bis	14 bar	DKD-R 6-1:2014	0,8 mbar + 1,0 \cdot 10 ⁻⁴ \cdot $p_{\rm e}$	$p_{\rm e}$ = Messwert Druckmedium: Gas

Vor-Ort-Kalibrierung – Wetzlar

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		ssber essspa	eich / anne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Temperaturmessgrößen Widerstandsthermometer,	−30 °C	bis	150 °C	DKD-R 5-1:2018	0,1 K	Vergleich mit
direktanzeigende Thermometer mit Widerstandssensor *	> 150 °C	bis	250 °C	im Mikrobad	0,15 K	Referenz- thermometer
Thermoelemente, direktanzeigende Thermometer mit Thermoelementsensor *	−30 °C	bis	250 °C	DKD-R 5-3:2018 im Mikrobad	0,5 K	
Temperatur-Anzeigegeräte für Widerstands-thermometer *	-200 °C	bis	850 °C	DKD-R 5-5:2018	40 mK	Kennlinie nach DIN EN 60751:2009
Simulatoren für Widerstandsthermometer*	-200 °C	bis	850 °C		30 mK	
Temperatur-				DKD-R 5-5:2018		Kennlinie nach
Anzeigegeräte für	−200 °C	bis	-50 °C	ohne Vergleichsstellen-	0,5 K	DIN EN 60584:2014
Thermoelemente: *	> -50 °C	bis	900 °C	kompensation	0,3 K	
Typ K, J, E, N, T	> 900 °C	bis	1300 °C		0,4 K	
Typ R, S	0 °C	bis	100 °C		1,5 K	
	> 100 °C	bis	1800 °C		1,0 K	
Тур В	600 °C	bis	800 °C		1,5 K	1
	> 800 °C	bis	1800 °C		1,0 K	
Druck * Positiver Überdruck	0 bar	bis	14 bar	DKD-R 6-1:2014	0,8 mbar + 1,0 · 10 ⁻⁴ · $p_{\rm e}$	$p_{\rm e}$ = Messwert Druckmedium Gas

Ruhla

Vor-Ort-Kalibrierung - Ruhla

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messberei Messspar	- ,	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Härte (WPM) * Kalibrieren von Härte- prüfmaschinen nach Brinell-, Vickers- und Rockwellverfahren	60 HBW bis 50 HV bis (Härteskal HV5 bis HV: (Härteskal HV0,01 bis I 20 HRA bis 10 HRBW bis 1 20 HRC bis 20 HRN bis	650 HBW 1500 HV len 100) len HV3)	DIN EN ISO 6506-2:2019 DIN EN ISO 6507-2:2018 DIN EN ISO 6508-2:2015	2 % HBW 1 % HV, jedoch nicht kleiner als 1,5 · <i>U</i> _{CRM} 2 % HV, jedoch nicht kleiner als 1,5 · <i>U</i> _{CRM} 0,6 HRA 1,0 HRBW 0,6 HRC 1,0 HRN 1,6 HRTW	Die Messunsicherheit wird bei direkter und indirekter Kalibrierung der Härteprüfmaschine ermittelt UCRM = Unsicherheit der Kalibrierung der Härtevergleichsplatte
Kalibrierung der Tiefen- messeinrichtung von Rockwellhärteprüf- maschinen *	0 mm bis	0,25 mm	DIN EN ISO 6508-2:2015	0,6 μm	Direkte Kalibrierung mit Tiefenmesseinrichtung
Kalibrierung der opti- schen Eindruckmessein- richtung von Härteprüf- maschinen *	0,01 mm bis	6 mm	DIN EN ISO 6506-2:2019 DIN EN ISO 6507-2:2013	0,15 μm	Messprinzip: Objekt- mikrometer im Auflicht
Kalibrierung der Kraft- messeinrichtung von Härteprüfmaschinen *	2,5 N bis 0,1 N bis	50 kN 100 N	DIN EN ISO 6506-2:2019 DIN EN ISO 6507-2:2018 DIN EN ISO 6508-2:2015	0,24 % 0,10 %	mit Kraftaufnehmern (Klasse 1) in Druck- kraftrichtung

Nürnberg

Permanentes Laboratorium - Nürnberg

Kalibrier- und Messmöglichkeiten (CMC)

	man b			(00)	
Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Drehmoment * handbetätigte Drehmoment- schraubwerkzeuge, auslösend / anzeigend	1 N·m bis	1000 N·m	DIN EN ISO 6789-2:2017	1 · 10-2	
Temperaturmessgrößen *					
Widerstandthermometer und direktanzeigende Thermometer mit Widerstandssensoren	−10 °C bis	140 °C	DKD-R 5-1:2018 im Flüssigkeitsbad	0,3 K	Vergleich mit Referenz- thermometer
Thermoelemente und direktanzeigende Thermometer mit Thermoelementsensoren	−10 °C bis	140 °C	DKD-R 5-3:2018 im Flüssigkeitsbad	1 K	Vergleich mit Referenz- thermometer
Temperaturanzeigegeräte für Thermoelemente	−200 °C bis	1200 °C	DKD-R 5-5:2018	0,6 K	Kennlinie nach DIN EN 60584-1:2014
Feuchtemessgrößen *					
Messgeräte für relative Feuchte - Hygrometer	25 % bis	75 %	DKD-R 5-8:2019 im Klimaschrank Lufttemperatur 25°C	2 %	Vergleich mit kapazitiven Feuchtesensoren Messunsicherheit als Absolutwert der relativen Feuchte

Verwendete Abkürzungen:

ASTM American Society for Testing and Materials

CMC Calibration and measurement capabilities (Kalibrier- und Messmöglichkeiten)

DIN Deutsches Institut für Normung e.V.

DKD-R Richtlinie des Deutschen Kalibrierdienstes (DKD),

herausgegeben von der Physikalisch-Technischen Bundesanstalt

EURAMET European Association of National Metrology Institutes

OIML R International Recommendation of International Organization of Legal Metrology

Trescal BS KA Kalibrierverfahren der Trescal GmbH

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik e.V.

VDI Verein Deutscher Ingenieure e.V.

Gültig ab: 10.01.2024 Ausstellungsdatum: 10.01.2024

Seite 21 von 21

Anhang Flexible Akkreditierung

Kalibrier- und Messmöglichkeiten (CMC)

> Teil-Akkreditierungsurkunde D-K-15015-01-01

Für die folgenden Messgrößen/Kalibriergegenstände verwendet das Laboratorium Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen zur Teil-Akkreditierungsurkunde:

Permanentes Laboratorium - Neustadt

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge						
Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	300 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessenerDurchmesser

Permanentes Laboratorium - Esslingen

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge						
Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	200 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser

Permanentes Laboratorium - Parchim

Messgröße /	Messbereich /			Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messspanne			Verfahren	Messunsicherheit	
Länge Innenmessschrauben mit 3-Linien-Berührung *	3 mm bis 300 mm		300 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser 300 mm = Endwert des Messbereiches

Für die mit * gekennzeichneten Messgrößen/Kalibriergegenstände ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierrichtlinien im flexiblen Akkreditierungsbereich.

Stand: 22.03.2024 > Seite 1 von 2

Anhang Flexible Akkreditierung

Permanentes Laboratorium – Berlin / Mahlow

Messgröße /	Messbereich /			Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand	Messspanne			Verfahren	Messunsicherheit	
Länge Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	200 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser 200 mm = Endwert des Messbereiches

Permanentes Laboratorium - Halver

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge						
Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	150 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser

Permanentes Laboratorium - Ruhla

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			•		•	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge									
Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	200 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	4 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessenerDurchmesser			

Permanentes Laboratorium - Nürnberg

Messgröße / Kalibriergegenstand	Messbereich / Messspanne			Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge	2	hic	200 mm	VDI/VDE/DCO/DVD 3619	3 um + 10 10 f d	d – gomessener
Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	200 mm	VDI/VDE/DGQ/DKD 2618, Blatt 10.8:2024	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser

Für die mit * gekennzeichneten Messgrößen/Kalibriergegenstände ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierrichtlinien im flexiblen Akkreditierungsbereich.

Stand: 22.03.2024 > Seite 2 von 2