## Trescal

## CALIBRATION AND MEASUREMENT CAPABILITIES (CMC)

THIS DOCUMENT CONTAINS:
> ACCREDITATION CERTIFICATE + ANNEX D-K-15015-01-00
> PARTIAL ACCREDITATION CERTIFICATE + ANNEX D-K-15015-01-01
> PARTIAL ACCREDITATION CERTIFICATE + ANNEX D-K-15015-01-02
> ANNEX FLEXIBLE ACCREDITATION

## DAkkS

Deutsche
Akkreditierungsstelle

## Accreditation

The Deutsche Akkreditierungsstelle attests with this Accreditation Certificate that the calibration laboratory

## Trescal GmbH

## Borsigstraße 11, 64291 Darmstadt

meets the requirements of DIN EN ISO/IEC 17025:2018 for the conformity assessment activities specified in the following partial accreditation certificates. This includes additional existing legal and normative requirements for the calibration laboratory, including those in relevant sectoral schemes, provided that these are explicitly confirmed in the annexes to the partial accreditation certificates listed below.

D-K-15015-01-01
D-K-15015-01-02

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and they conform to the general principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) $765 / 2008$, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This accreditation certificate consists of this cover sheet, the reverse side of the cover sheet and the following annex. It only applies in connection with the partial accreditation certificates listed above and the notices referred to there.

Registration number of the certificate: D-K-15015-01-00


The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).
This document is a translation. The definitive version is the original German accreditation certificate.

# Deutsche Akkreditierungsstelle GmbH 

Office Berlin<br>Spittelmarkt 10<br>10117 Berlin

Office Frankfurt am Main<br>Europa-Allee 52<br>60327 Frankfurt am Main

Office Braunschweig
Bundesallee 100
38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:
EA: www.european-accreditation.org
ILAC: www.ilac.org
IAF: www.iaf.nu

## Deutsche Akkreditierungsstelle

# Annex to the Accreditation Certificate D-K-15015-01-00 according to DIN EN ISO/IEC 17025:2018 

Valid from: $\quad 15.06 .2023$<br>Date of issue: $\quad 10.10 .2023$<br>Holder of accreditation certificate:<br>Trescal GmbH<br>Borsigstraße 11, 64291 Darmstadt

The calibration laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The calibration laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed in the annexes to the partial accreditation certificates listed below.

D-K-15015-01-01
D-K-15015-01-02

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and they conform to the general principles of DIN EN ISO 9001.

[^0]
## DAkkS

## Accreditation

The Deutsche Akkreditierungsstelle attests with this Partial Accreditation Certificate that the calibration laboratory

## Trescal GmbH

Borsigstraße 11, 64291 Darmstadt
meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the calibration laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and they conform to the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) $765 / 2008$, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This partial accreditation certificate only applies in connection with the notice of 10.01.2024 with accreditation number D-K-15015-01.
It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 72 pages.

Registration number of the partial accreditation certificate: D-K-15015-01-01
It is a part of the accreditation certificate: D-K-15015-01-00.

| Berlin, 10.01.2024 | Dr. Florian Witt <br> Head of Technical Unit | Translation issued: |
| :--- | :--- | :--- |

# Deutsche Akkreditierungsstelle GmbH 

Office Berlin<br>Spittelmarkt 10<br>10117 Berlin

Office Frankfurt am Main<br>Europa-Allee 52<br>60327 Frankfurt am Main

Office Braunschweig
Bundesallee 100
38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:
EA: www.european-accreditation.org
ILAC: www.ilac.org
IAF: www.iaf.nu

## DAkkS

## Deutsche Akkreditierungsstelle

Annex to the Partial Accreditation CertificateD-K-15015-01-01according to DIN EN ISO/IEC 17025:2018
Valid from: ..... 10.01.2024
Date of issue: ..... 10.01.2024
This annex is a part of the accreditation certificate D-K-15015-01-00.
Holder of partial accreditation certificate:
Trescal GmbH
Borsigstraße 11, 64291 Darmstadt
with the locations
Trescal GmbH
Borsigstraße 11, 64291 Darmstadt
Trescal GmbH
Branch Neustadt
Ernst-Abbe-Straße 18, 01844 Neustadt
Trescal GmbH
Branch Esslingen
Limburgstraße 6, 73734 Esslingen
Trescal GmbH
Branch Parchim
Ludwigsluster Chaussee 5, 19370 Parchim

[^1]Trescal GmbH<br>Branch Mahlow<br>Ibsenstraße 71, 15831 Mahlow

## Trescal GmbH

Branch Donauwörth
Dr.-Ludwig-Bölkow-Straße 1, 86609 Donauwörth

## Trescal GmbH

Branch Halver
Oststraße 7, 58553 Halver

Trescal GmbH
Branch Braunschweig
Weinbergweg 36, 38106 Braunschweig

## Trescal GmbH

Branch Leipzig
BMW-Werk Leipzig, BMW-Allee 1, 04349 Leipzig

Trescal GmbH<br>Branch Wetzlar<br>Friedenstraße 26, 35578 Wetzlar

## Trescal GmbH

Branch Ruhla
Bahnhofstraße 25, 99842 Ruhla

## Trescal GmbH

Branch Nürnberg
Poststraße 15a, 90471 Nürnberg

The calibration laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The calibration laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.
The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and they conform to the general principles of DIN EN ISO 9001.

[^2]Date of issue: $\quad 10.01 .2024$

Calibration in the fields:

Dimensional quantities
Length

- Length measuring devices ${ }^{\text {b) }}$
- Length measuring instruments ${ }^{\text {a) }}$ c)
- Length gauges
- Diameter ${ }^{\text {c }}$
- Thread
- Form error
- Straightness ${ }^{\text {b) }}$
- Flatness ${ }^{\text {b) }}$
- Roughness
- Stylus instruments ${ }^{\text {a) }}$

Coordinate measuring technology

- Coordinate measuring machines ${ }^{\text {b) }}$

Electrical quantities
DC and low frequency quantities

- DC voltage ${ }^{\text {a) }}$
- AC voltage ${ }^{\text {a) }}$
- DC current ${ }^{\text {a) }}$
- AC current ${ }^{\text {a) }}$
- DC resistance ${ }^{\text {a) }}$
- Capacitance ${ }^{\text {a) }}$
- Inductance
- Electric power ${ }^{\text {a) }}$
- Power factor ${ }^{\text {a) }}$
- Voltage ratio ${ }^{\text {a) }}$

Time and frequency

- Frequency ${ }^{\text {a) }}$
- Time intervall ${ }^{\text {a) }}$

High frequency and radiation quantities
High frequency quantities

- HF voltage
- Oscilloscope quantities ${ }^{\text {a) }}$
- Rise time ${ }^{\text {a) }}$
- Band width ${ }^{\text {a) }}$
${ }^{\text {a) }}$ also as On-site calibration b) only as On-site calibration c) also in mobile laboratory

Within the measurands/calibration items marked with *, the calibration laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use calibration standards or equivalent calibration procedures listed here with different issue dates.
The calibration laboratory maintains a current list of all calibration standards / equivalent calibration procedures within the flexible scope of accreditation.

Valid from: $\quad 10.01 .2024$
Date of issue: 10.01.2024
Page 3 of 72
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Darmstadt

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Measurement instruments | $\begin{gathered} 0.1 \mathrm{~V} \\ 1 \mathrm{~V} \\ 10 \mathrm{~V} ; 100 \mathrm{~V} ; 1000 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} 13 \cdot 10^{-6} \cdot U \\ 1.7 \cdot 10^{-6} \cdot U \\ 2.5 \cdot 10^{-6} \cdot U \end{gathered}$ | $U=$ measured value <br> Calibration with <br> Fluke 732A and 752A |
|  | 0 mV to 0.22 V <br> $>0.22 \mathrm{~V}$ to 2.2 V <br> $>2.2 \mathrm{~V}$ to 11 V <br> $>11 \mathrm{~V}$ to 22 V <br> $>22 \mathrm{~V}$ to 220 V <br> $>220 \mathrm{~V}$ to 1100 V |  | $\begin{aligned} & 6 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 7 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 8 \cdot 10^{-6} \cdot U+6 \mu \mathrm{~V} \\ & 6 \cdot 10^{-6} \cdot U+20 \mu \mathrm{~V} \\ & 10 \cdot 10^{-6} \cdot U+0.25 \mathrm{mV} \\ & 10 \cdot 10^{-6} \cdot U+1.3 \mathrm{mV} \end{aligned}$ | Calibration with Calibrator Fluke 5700A |
|  | $\begin{array}{rrr} 0 \mathrm{mV} & \text { to } & 0.2 \mathrm{~V} \\ >0.2 \mathrm{~V} & \text { to } & 2 \mathrm{~V} \\ >2 \mathrm{~V} & \text { to } & 20 \mathrm{~V} \\ >20 \mathrm{~V} & \text { to } & 200 \mathrm{~V} \\ >200 \mathrm{~V} & \text { to } & 1000 \mathrm{~V} \end{array}$ |  | $\begin{aligned} & 2 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 2 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 2 \cdot 10^{-6} \cdot U+20 \mu \mathrm{~V} \\ & 4 \cdot 10^{-6} \cdot U+0.24 \mathrm{mV} \\ & 5 \cdot 10^{-6} \cdot U+1.2 \mathrm{mV} \end{aligned}$ | Calibration via substitution method with DMM Fluke 8508A |
| DC voltage Sources | 0.1 V 1 V $10 \mathrm{~V} ; 100 \mathrm{~V} ; 1000 \mathrm{~V}$ |  | $\begin{gathered} 16 \cdot 10^{-6} \cdot U \\ 1.9 \cdot 10^{-6} \cdot U \\ 2.5 \cdot 10^{-6} \cdot U \end{gathered}$ | Calibration with Fluke 732A and 752A |
|  | 0 mV to 0.12 V <br> $>0.12 \mathrm{~V}$ to 1.2 V <br> $>1.2 \mathrm{~V}$ to 12 V <br> $>12 \mathrm{~V}$ to 100 V <br> $>100 \mathrm{~V}$ to 200 V <br> $>200 \mathrm{~V}$ to 500 V <br> $>500 \mathrm{~V}$ to 700 V <br> $>700 \mathrm{~V}$ to 1000 V |  | $\begin{gathered} 5 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ 4.5 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ 7 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 15 \cdot 10^{-6} \cdot U+40 \mu \mathrm{~V} \\ 7 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \\ 10 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \\ 13 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \\ 20 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \end{gathered}$ | Calibration with DMM HP 3458A |
| DC voltage Sources | $\begin{array}{rlr} 0 \mathrm{mV} & \text { to } & 0.2 \mathrm{~V} \\ >0.2 \mathrm{~V} & \text { to } & 2 \mathrm{~V} \\ >2 \mathrm{~V} & \text { to } & 20 \mathrm{~V} \\ >20 \mathrm{~V} & \text { to } & 200 \mathrm{~V} \\ >200 \mathrm{~V} & \text { to } & 1000 \mathrm{~V} \end{array}$ |  | $\begin{aligned} & 1 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 2 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 2 \cdot 10^{-6} \cdot U+20 \mu \mathrm{~V} \\ & 3 \cdot 10^{-6} \cdot U+0.23 \mathrm{mV} \\ & 4 \cdot 10^{-6} \cdot U+1.2 \mathrm{mV} \end{aligned}$ | Calibration with DMM Fluke 8508A |
|  | 1 kV to 6 kV |  | $1 \cdot 10^{-3} \cdot U$ | Calibration with multimeter and high voltage divider |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| DC voltage Sources | 0 V 50 mV 100 mV 500 mV 1 V 1.9 V 4 V 5 V 6 V 8 V 10 V 12 V 15 V 19 V 50 V 100 V 500 V 1000 V |  | $\begin{array}{r} 1.5 \mu \mathrm{~V} \\ 2 \mu \mathrm{~V} \\ 2 \mu \mathrm{~V} \\ 2.5 \mu \mathrm{~V} \\ 3 \mu \mathrm{~V} \\ 15 \mu \mathrm{~V} \\ 15 \mu \mathrm{~V} \\ 20 \mu \mathrm{~V} \\ 20 \mu \mathrm{~V} \\ 25 \mu \mathrm{~V} \\ 25 \mu \mathrm{~V} \\ 35 \mu \mathrm{~V} \\ 40 \mu \mathrm{~V} \\ 45 \mu \mathrm{~V} \\ 0.2 ~ \mathrm{mV} \\ 0.32 \mathrm{mV} \\ 2.2 ~ \mathrm{mV} \\ 3.3 ~ \mathrm{mV} \end{array}$ | Calibration with DMM Fluke 8508A |
| DC current Measurement instruments | $1 \mu \mathrm{~A}$ to 0.12 mA <br> $>0.12 \mathrm{~mA}$ to 1.2 mA <br> $>1.2 \mathrm{~mA}$ to 12 mA <br> $>12 \mathrm{~mA}$ to 0.12 A <br> $>0.12 \mathrm{~A}$ to 1.05 A <br> $>1.05 \mathrm{~A}$ to 11 A <br> $>11 \mathrm{~A}$ to 20 A |  | $\begin{gathered} 20 \cdot 10^{-6} \cdot I+2 \mathrm{nA} \\ 20 \cdot 10^{-6} \cdot I+15 \mathrm{nA} \\ 20 \cdot 10^{-6} \cdot I+0.15 \mu \mathrm{~A} \\ 40 \cdot 10^{-6} \cdot I+1.5 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+15 \mu \mathrm{~A} \\ 30 \cdot 10^{-6} \cdot I+0.4 \mathrm{~mA} \\ 35 \cdot 10^{-6} \cdot I+0.22 \mathrm{~mA} \end{gathered}$ | $I=$ measured value <br> Substitution method with DMM HP 3458A and Shunt Fluke Y5020 |
|  |  100 nA to <br> $>200 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ <br> $>2 \mathrm{~mA}$ to 20 mA <br> $>20 \mathrm{~mA}$ to 200 mA <br> $>0.2 \mathrm{~A}$ to 2 A <br> $>2 \mathrm{~A}$ to 20 A |  | $\begin{gathered} 11 \cdot 10^{-6} \cdot I+1 \mathrm{nA} \\ 11 \cdot 10^{-6} \cdot I+10 \mathrm{nA} \\ 12 \cdot 10^{-6} \cdot I+0.1 \mu \mathrm{~A} \\ 40 \cdot 10^{-6} \cdot I+1 \mu \mathrm{~A} \\ 0.15 \cdot 10^{-3} \cdot I+20 \mu \mathrm{~A} \\ 0.35 \cdot 10^{-3} \cdot I+0.5 \mathrm{~mA} \end{gathered}$ | Substitution method with DMM HP 8508A |
|  | $>20 \mathrm{~A}$ to 50 A |  | $0.5 \cdot 10^{-3} \cdot I+5 \mathrm{~mA}$ | Substitution method with DMM HP 3458A / H\&B $0.01 \Omega$ |
| DC current <br> Measurement instruments with converter method | $\begin{array}{rlr} \hline>10 \mathrm{~A} & \text { to } & 16.5 \mathrm{~A} \\ >16.5 \mathrm{~A} & \text { to } & 150 \mathrm{~A} \\ >150 \mathrm{~A} & \text { to } & 1025 \mathrm{~A} \end{array}$ |  | $\begin{aligned} & \hline 6 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 6 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \\ & 6 \cdot 10^{-3} \cdot I+0.5 \mathrm{~A} \end{aligned}$ | Calibration with Fluke 5500A / Coil |
| DC current Sources | $\begin{array}{rlr} 1 \mu \mathrm{~A} & \text { to } & 0.12 \mathrm{~mA} \\ >0.12 \mathrm{~mA} & \text { to } & 1.2 \mathrm{~mA} \\ >1.2 \mathrm{~mA} & \text { to } & 12 \mathrm{~mA} \\ >12 \mathrm{~mA} & \text { to } & 0.12 \mathrm{~A} \\ >0.12 \mathrm{~A} & \text { to } & 1.05 \mathrm{~A} \end{array}$ |  | $\begin{gathered} 20 \cdot 10^{-6} \cdot I+2 \mathrm{nA} \\ 20 \cdot 10^{-6} \cdot I+8 \mathrm{nA} \\ 20 \cdot 10^{-6} \cdot I+80 \mathrm{nA} \\ 40 \cdot 10^{-6} \cdot I+0.7 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+15 \mu \mathrm{~A} \end{gathered}$ | Calibration with DMM HP 3458A |
|  | $\begin{array}{rll} >1.05 \mathrm{~A} & \text { to } & 11 \mathrm{~A} \\ >11 \mathrm{~A} & \text { to } & 20 \mathrm{~A} \end{array}$ |  | $\begin{array}{ll} 30 \cdot 10^{-6} \cdot I+ & 0.4 \mathrm{~mA} \\ 35 \cdot 10^{-6} \cdot I+ & 0.22 \mathrm{~mA} \end{array}$ | Calibration with DMM HP 3458A and Shunt Fluke Y 5020 |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS



This document is a translation. The definitive version is the original German annex to the accreditation certificate.

| Permanent Laboratory - Darmstadt |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| DC resistance Resistancemeasurement instruments | $\begin{array}{r} 10 \mathrm{~m} \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 1.9 \Omega \\ 10 \Omega \\ 19 \Omega \\ 100 \Omega \\ 190 \Omega \\ 1 \mathrm{k} \Omega \\ 1.9 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 19 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 190 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ 1.9 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 19 \mathrm{M} \Omega \\ 100 \mathrm{M} \Omega \end{array}$ |  | $40 \cdot 10^{-6} \cdot R$ $0.13 \cdot 10^{-3} \cdot R$ $5.2 \cdot 10^{-6} \cdot R$ $0.12 \cdot 10^{-3} \cdot R$ $35 \cdot 10^{-6} \cdot R$ $33 \cdot 10^{-6} \cdot R$ $23 \cdot 10^{-6} \cdot R$ $23 \cdot 10^{-6} \cdot R$ $16 \cdot 10^{-6} \cdot R$ $16 \cdot 10^{-6} \cdot R$ $5 \cdot 10^{-6} \cdot R$ $15 \cdot 10^{-6} \cdot R$ $16 \cdot 10^{-6} \cdot R$ $18 \cdot 10^{-6} \cdot R$ $22 \cdot 10^{-6} \cdot R$ $25 \cdot 10^{-6} \cdot R$ $50 \cdot 10^{-6} \cdot R$ $60 \cdot 10^{-6} \cdot R$ $0.15 \cdot 10^{-3} \cdot R$ | Calibration with Calibrator Fluke 5700A, Calibration at $0.01 \Omega$ with Shunt Fluke Y5020, Calibration at $1 \Omega \& 10 \mathrm{k} \Omega$ with Standard resistors Tinsley 5685B-1 $\Omega$ \& $10 \mathrm{k} \Omega$ |
|  | $\begin{array}{rlr} \hline 0.01 \Omega & \text { to } & 0.1 \Omega \\ >0.1 \Omega & \text { to } & 1 \Omega \\ >1 \Omega & \text { to } & 10 \Omega \end{array}$ |  | $\begin{aligned} & 0.1 \cdot 10^{-3} \cdot R+20 \mu \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+0.2 \mathrm{~m} \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+2 \mathrm{~m} \Omega \end{aligned}$ | Calibration with Shunt Fluke Y5020 and HP 3458 via current/voltagemethod |
|  | $10 \Omega$ to $100 \Omega$ <br> $>100 \Omega$ to $1 \mathrm{k} \Omega$ <br> $>1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ <br> $>10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ <br> $>100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ <br> $>1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$ <br> $>10 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$ <br> $>100 \mathrm{M} \Omega$ to $10 \mathrm{G} \Omega$ |  | $\begin{aligned} & 0.1 \cdot 10^{-3} \cdot R+20 \mathrm{~m} \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+0.2 \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+2 \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+20 \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+0.2 \mathrm{k} \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+2 \mathrm{k} \Omega \\ & 0.6 \cdot 10^{-3} \cdot R+20 \mathrm{k} \Omega \\ & 7 \cdot 10^{-3} \cdot R+0.2 \mathrm{M} \Omega \end{aligned}$ | Calibration via substitution method with a resistor and a multimeter |
| AC voltage Measurement instruments | 0.1 V | $\begin{gathered} 20 \mathrm{~Hz} ; 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 25 \mu \mathrm{~V} \\ & 25 \mu \mathrm{~V} \\ & 40 \mu \mathrm{~V} \\ & 50 \mu \mathrm{~V} \end{aligned}$ | Calibration with calibrator Fluke 5700A / 5725A |
|  | 1 V | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} ; 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} ; 70 \mathrm{kHz} ; 100 \mathrm{kHz} \\ 200 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{gathered}$ | $\begin{array}{r} 0.1 \mathrm{mV} \\ 70 \mu \mathrm{~V} \\ 80 \mu \mathrm{~V} \\ 0.1 \mathrm{mV} \\ 0.2 \mathrm{mV} \\ 1 \mathrm{mV} \\ 2 \mathrm{mV} \end{array}$ |  |
|  | 4 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.25 mV |  |
|  | 6 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.35 mV |  |
|  | 8 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.4 mV |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| AC voltage Measurement instruments | 10 V | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 70 \mathrm{kHz} ; 100 \mathrm{kHz} \\ 200 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{gathered}$ | 0.7 mV <br> 0.5 mV <br> 0.6 mV <br> 1 mV <br> 1.2 mV <br> 3 mV <br> 10 mV <br> 15 mV | Calibration with calibrator Fluke 5700A / 5725A |
|  | 13 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.5 mV |  |
|  | 15 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.8 mV |  |
|  | 18 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1 mV |  |
|  | 20 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1.1 mV |  |
|  | 100 V | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 70 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | 10 mV <br> 7 mV <br> 7 mV <br> 20 mV <br> 30 mV <br> 37 mV |  |
|  | 700 V | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 80 mV |  |
|  | 1000 V | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 0.1 V |  |
| AC voltage Measurement instruments | 2 mV to 2.2 mV |  | $\begin{array}{r} 0.61 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.24 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.13 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.41 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 1.4 \cdot 10^{-3} \cdot U+18 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \\ 3 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \end{array}$ | $U$ = measured value |
|  | $>2.2 \mathrm{mV}$ to 22 mV |  | $\begin{array}{r} 0.59 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 0.22 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 0.11 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 0.39 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 1 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \\ 1.4 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 3.8 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \end{array}$ |  |
|  | $>22 \mathrm{mV}$ to 0.22 V |  | $\begin{gathered} 0.63 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 0.25 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.12 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.37 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.9 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \\ 1.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 3.8 \cdot 10^{-3} \cdot U+0.13 \mathrm{mV} \end{gathered}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Measurement instruments | $>0.22 \mathrm{~V}$ to | 2.2 V |  | $\begin{gathered} 0.64 \cdot 10^{-3} \cdot U+0.13 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 85 \cdot 10^{-6} \cdot U+18 \mu \mathrm{~V} \\ 0.15 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ 0.3 \cdot 10^{-3} \cdot U+90 \mu \mathrm{~V} \\ 0.5 \cdot 10^{-3} \cdot U+0.17 \mathrm{mV} \\ 1.3 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ 2.5 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV} \end{gathered}$ | $U=$ measured value Calibration with calibrator Fluke 5700A / 5725A |
|  | $>2.2 \mathrm{~V}$ to | 22 V |  | $\begin{gathered} 0.64 \cdot 10^{-3} \cdot U+1.3 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.35 \mathrm{mV} \\ 90 \cdot 10^{-6} \cdot U+0.13 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+0.25 \mathrm{mV} \\ 0.3 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ 0.6 \cdot 10^{-3} \cdot U+2 \mathrm{mV} \\ 1.6 \cdot 10^{-3} \cdot U+5.5 \mathrm{mV} \\ 3.2 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{gathered}$ |  |
|  | $>22 \mathrm{~V}$ to | 220 V | 10 Hz to 20 Hz <br> $>$ 20 Hz tot <br> 4040 Hz   <br>  40 Hz 0 <br> $>$ 20 kHz  <br> $>$ 50 kHz to | $\begin{array}{r} 0.65 \cdot 10^{-3} \cdot U+12 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+3.5 \mathrm{mV} \\ 0.1 \cdot 10^{-3} \cdot U+1.7 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+4.8 \mathrm{mV} \\ 0.7 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{array}$ |  |
|  | $>220 \mathrm{~V}$ to | 1.1 kV | $\begin{array}{rlr}  & 40 \mathrm{~Hz} & \text { to } \\ 50 \mathrm{~Hz} & \text { to } & 1 \mathrm{kHz} \\ >1 \mathrm{kHz} & \text { to } & 20 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 80 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 80 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{array}$ |  |
| AC voltage Sources | 0.1 V |  | $\begin{gathered} 20 \mathrm{~Hz} ; 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 25 \mu \mathrm{~V} \\ & 25 \mu \mathrm{~V} \\ & 40 \mu \mathrm{~V} \\ & 50 \mu \mathrm{~V} \end{aligned}$ | Substitution method with calibrator Fluke 5700A / 5725A |
|  | 1 V |  | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} ; 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} ; 70 \mathrm{kHz} ; 100 \mathrm{kHz} \\ 200 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{gathered}$ | $\begin{array}{r} 0.1 \mathrm{mV} \\ 70 \mu \mathrm{~V} \\ 80 \mu \mathrm{~V} \\ 0.1 \mathrm{mV} \\ 0.2 \mathrm{mV} \\ 1 \mathrm{mV} \\ 2 \mathrm{mV} \end{array}$ |  |
|  | 4 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.25 mV |  |
|  | 6 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.35 mV |  |
|  | 8 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.4 mV |  |
|  | 10 V |  | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 70 \mathrm{kHz} ; 100 \mathrm{kHz} \\ 200 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{gathered}$ | 0.7 mV <br> 0.5 mV <br> 0.6 mV <br> 1 mV <br> 1.2 mV <br> 3 mV <br> 10 mV <br> 15 mV |  |
|  | 13 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.5 mV |  |

Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Sources | 15 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.8 mV | Substitution method with calibrator Fluke 5700A / 5725A$U=\text { measured value }$ |
|  | 18 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1 mV |  |
|  | 20 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1.1 mV |  |
|  | 100 V |  | 20 Hz $40 \mathrm{~Hz} ; 1 \mathrm{kHz}$ $10 \mathrm{kHz} ; 20 \mathrm{kHz}$ 50 kHz 70 kHz 100 kHz | 10 mV <br> 7 mV <br> 7 mV <br> 20 mV <br> 30 mV <br> 37 mV |  |
|  | 700 V |  | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 80 mV |  |
|  | 1000 V |  | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 0.1 V |  |
|  | 0.1 V to | 0.22 V | $\begin{array}{rlr} 20 \mathrm{~Hz} & \text { to }<40 \mathrm{~Hz} \\ 40 \mathrm{~Hz} & \text { to } 20 \mathrm{kHz} \\ >20 \mathrm{kHz} & \text { to } 50 \mathrm{kHz} \\ >50 \mathrm{kHz} & \text { to } 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.12 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.37 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.9 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \end{array}$ |  |
|  | $>0.22 \mathrm{~V}$ to | 2.2 V | 20 Hz to $<40 \mathrm{~Hz}$ 40 Hz to 20 kHz $>20 \mathrm{kHz}$ to 50 kHz $>50 \mathrm{kHz}$ to 100 kHz $>100 \mathrm{kHz}$ to 300 kHz $>300 \mathrm{kHz}$ to 500 kHz $>500 \mathrm{kHz}$ to 1 MHz | $0.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V}$ $80 \cdot 10^{-6} \cdot U+25 \mu \mathrm{~V}$ $0.15 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V}$ $0.3 \cdot 10^{-3} \cdot U+90 \mu \mathrm{~V}$ $0.5 \cdot 10^{-3} \cdot U+0.17 \mathrm{mV}$ $1.3 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV}$ $2.5 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV}$ |  |
|  | $>2.2 \mathrm{~V}$ to | 22 V | 20 Hz to $<40 \mathrm{~Hz}$ 40 Hz to 20 kHz $>20 \mathrm{kHz}$ to 50 kHz $>50 \mathrm{kHz}$ to 100 kHz $>100 \mathrm{kHz}$ to 300 kHz $>300 \mathrm{kHz}$ to 500 kHz $>500 \mathrm{kHz}$ to 1 MHz | $\begin{aligned} & 0.2 \cdot 10^{-3} \cdot U+0.35 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV} \\ & 0.15 \cdot 10^{-3} \cdot U+0.28 \mathrm{mV} \\ & 0.3 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ & 0.6 \cdot 10^{-3} \cdot U+2 \mathrm{mV} \\ & 1.6 \cdot 10^{-3} \cdot U+5.5 \mathrm{mV} \\ & 3.2 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{aligned}$ |  |
|  | $>22 \mathrm{~V}$ to | 220 V | 20 Hz to $<40 \mathrm{~Hz}$ <br> 40 Hz to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.22 \cdot 10^{-3} \cdot U+3.5 \mathrm{mV} \\ 0.12 \cdot 10^{-3} \cdot U+1.7 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+4.8 \mathrm{mV} \\ 0.7 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{gathered}$ |  |
|  | $>220 \mathrm{~V}$ to | 1.1 kV | $\begin{aligned} & 40 \mathrm{~Hz} \\ & \text { to }<50 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \text { to } \\ &>1 \mathrm{kHz} \text { to } 20 \mathrm{kHz} \end{aligned}$ | $\begin{array}{r} 90 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 90 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{array}$ |  |
|  | 1 mV to | 2.2 mV |  | $\begin{array}{r} 1.6 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 0.6 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 0.3 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 0.75 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 2.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 2.6 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 3.7 \cdot 10^{-3} \cdot U+11 \mu \mathrm{~V} \end{array}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Sources | $>2.2 \mathrm{mV}$ to | 7 mV |  | $\begin{array}{r} 0.8 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 0.29 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 0.14 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 0.36 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 0.58 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 1.2 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 1.4 \cdot 10^{-3} \cdot U+11 \mu \mathrm{~V} \\ 2.4 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \end{array}$ | $U=$ measured value Calibration with Fluke 5790A in direct measurement |
|  | $>7 \mathrm{mV}$ to | 22 mV | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz <br> $>100 \mathrm{kHz}$ to 300 kHz <br> $>300 \mathrm{kHz}$ to 500 kHz <br> $>500 \mathrm{kHz}$ to 1 MHz | $\begin{gathered} 0.23 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.13 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.16 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.16 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.29 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.8 \cdot 10^{-3} \cdot U+9 \mu \mathrm{~V} \\ 0.95 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \\ 1.8 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \end{gathered}$ |  |
|  | $>22 \mathrm{mV}$ to | 70 mV | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz <br> $>100 \mathrm{kHz}$ to 300 kHz <br> $>300 \mathrm{kHz}$ to 500 kHz <br> $>500 \mathrm{kHz}$ to 1 MHz | $\begin{array}{r} \hline 0.24 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 0.11 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 50 \cdot 10^{-6} \cdot U+6 \mu \mathrm{~V} \\ 0.12 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.27 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.56 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.74 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \\ 1.2 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \end{array}$ |  |
|  | $>70 \mathrm{mV}$ to | 220 mV | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz <br> $>100 \mathrm{kHz}$ to 300 kHz <br> $>300 \mathrm{kHz}$ to 500 kHz <br> $>500 \mathrm{kHz}$ to 1 MHz | $\begin{array}{r} 0.23 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 80 \cdot 10^{-6} \cdot U+8 \mu \mathrm{~V} \\ 30 \cdot 10^{-6} \cdot U+9 \mu \mathrm{~V} \\ 65 \cdot 10^{-6} \cdot U+8 \mu \mathrm{~V} \\ 0.17 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.25 \cdot 10^{-3} \cdot U+16 \mu \mathrm{~V} \\ 0.41 \cdot 10^{-3} \cdot U+17 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+27 \mu \mathrm{~V} \end{array}$ |  |
|  | $>220 \mathrm{mV}$ to | 700 mV |  | $\begin{array}{r} 0.23 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 80 \cdot 10^{-6} \cdot U+7 \mu \mathrm{~V} \\ 30 \cdot 10^{-6} \cdot U+11 \mu \mathrm{~V} \\ 55 \cdot 10^{-6} \cdot U+9 \mu \mathrm{~V} \\ 85 \cdot 10^{-6} \cdot U+9 \mu \mathrm{~V} \\ 0.18 \cdot 10^{-6} \cdot U+33 \mu \mathrm{~V} \\ 0.32 \cdot 10^{-3} \cdot U+28 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \end{array}$ |  |
|  | $>700 \mathrm{mV}$ to | 2.2 V | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz <br> $>100 \mathrm{kHz}$ to 300 kHz <br> $>300 \mathrm{kHz}$ to 500 kHz <br> $>500 \mathrm{kHz}$ to 1 MHz | $\begin{array}{r} 0.22 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 75 \cdot 10^{-6} \cdot U+8 \mu \mathrm{~V} \\ 25 \cdot 10^{-6} \cdot U+17 \mu \mathrm{~V} \\ 50 \cdot 10^{-6} \cdot U+11 \mu \mathrm{~V} \\ 75 \cdot 10^{-6} \cdot U+12 \mu \mathrm{~V} \\ 0.16 \cdot 10^{-3} \cdot U+80 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+56 \mu \mathrm{~V} \\ 1 \cdot 10^{-3} \cdot U+78 \mu \mathrm{~V} \end{array}$ |  |

Valid from: $\quad 10.01 .2024$
Date of issue: $\quad 10.01 .2024$
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Sources | $>2.2 \mathrm{~V}$ to | 7 V |  | $\begin{gathered} 0.22 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \\ 75 \cdot 10^{-6} \cdot U+17 \mu \mathrm{~V} \\ 25 \cdot 10^{-6} \cdot U+40 \mu \mathrm{~V} \\ 55 \cdot 10^{-6} \cdot U+23 \mu \mathrm{~V} \\ 90 \cdot 10^{-6} \cdot U+28 \mu \mathrm{~V} \\ 0.19 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ 0.45 \cdot 10^{-3} \cdot U+0.11 \mathrm{mV} \\ 1.4 \cdot 10^{-3} \cdot U+0.17 \mathrm{mV} \end{gathered}$ | $U=$ measured value <br> Calibration with <br> Fluke 5790A in direct measurement |
|  | $>7 \mathrm{~V}$ to | 22 V |  | $\begin{aligned} & 0.22 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ & 75 \cdot 10^{-6} \cdot U+83 \mu \mathrm{~V} \\ & 25 \cdot 10^{-6} \cdot U+0.16 \mathrm{mV} \\ & 55 \cdot 10^{-6} \cdot U+0.11 \mathrm{mV} \\ & 90 \cdot 10^{-6} \cdot U+95 \mu \mathrm{~V} \\ & 0.19 \cdot 10^{-3} \cdot U+0.7 \mathrm{mV} \\ & 0.44 \cdot 10^{-3} \cdot U+0.38 \mathrm{mV} \\ & 1.3 \cdot 10^{-3} \cdot U+0.59 \mathrm{mV} \end{aligned}$ |  |
|  | $>22 \mathrm{~V}$ to | 70 V |  | $\begin{gathered} 0.22 \cdot 10^{-3} \cdot U+0.18 \mathrm{mV} \\ 75 \cdot 10^{-6} \cdot U+0.36 \mathrm{mV} \\ 30 \cdot 10^{-6} \cdot U+0.62 \mathrm{mV} \\ 65 \cdot 10^{-6} \cdot U+0.42 \mathrm{mV} \\ 0.1 \cdot 10^{-3} \cdot U+0.38 \mathrm{mV} \\ 0.21 \cdot 10^{-3} \cdot U+1.1 \mathrm{mV} \\ 0.46 \cdot 10^{-3} \cdot U+0.55 \mathrm{mV} \\ 1.4 \cdot 10^{-3} \cdot U+0.77 \mathrm{mV} \end{gathered}$ |  |
|  | $>70 \mathrm{~V}$ to | 220 V |  10 Hz to <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz  <br> $>50 \mathrm{kHz}$ to 100 kHz  | $\begin{aligned} & 0.22 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ & 75 \cdot 10^{-6} \cdot U+1.7 \mathrm{mV} \\ & 30 \cdot 10^{-6} \cdot U+2.8 \mathrm{mV} \\ & 65 \cdot 10^{-6} \cdot U+1.7 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+2.6 \mathrm{mV} \end{aligned}$ |  |
|  | $>220 \mathrm{~V}$ to | 700 V | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } 20 \mathrm{~Hz} \\ > & 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} \\ > & 20 \mathrm{kz} & \text { to } 20 \mathrm{kHz} \\ >50 \mathrm{kHz} & \text { to } & 50 \mathrm{kHz} \\ \hline \end{array}$ | $\begin{array}{r} 0.22 \cdot 10^{-3} \cdot U+5.3 \mathrm{mV} \\ 0.1 \cdot 10^{-3} \cdot U+9.7 \mathrm{mV} \\ 35 \cdot 10^{-6} \cdot U+16 \mathrm{mV} \\ 0.14 \cdot 10^{-3} \cdot U+7.8 \mathrm{mV} \\ 0.56 \cdot 10^{-3} \cdot U+8.2 \mathrm{mV} \end{array}$ |  |
|  | $>700 \mathrm{~V}$ to | 1000 V | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } 20 \mathrm{~Hz} \\ >20 \mathrm{~Hz} & \text { to } & 40 \mathrm{~Hz} \\ >40 \mathrm{~Hz} & \text { to } 20 \mathrm{kHz} \\ >20 \mathrm{kHz} & \text { to } 50 \mathrm{kHz} \\ >50 \mathrm{kHz} & \text { to } 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.22 \cdot 10^{-3} \cdot U+8.5 \mathrm{mV} \\ 0.11 \cdot 10^{-3} \cdot U+13 \mathrm{mV} \\ 35 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 0.14 \cdot 10^{-3} \cdot U+13 \mathrm{mV} \\ 0.57 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{array}$ |  |
|  | 1 kV to | 6 kV | 50 Hz | $2 \cdot 10^{-3} \cdot U$ | Calibration with multimeter and high voltage divider |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Sources | 1 mV to | 2.2 mV | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{aligned} & 0.4 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.7 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.5 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 0.5 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 1.3 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 2.8 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 7.6 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \end{aligned}$ | $U=$ measured value <br> Calibration with calibrator <br> Fluke 5790A <br> (Wide Band) in direct measurement |
|  | $>2.2 \mathrm{mV}$ to | 7 mV | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{array}{r} 0.5 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 0.8 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 0.6 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 0.6 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 1 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 1.8 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 4.2 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \end{array}$ |  |
|  | $>7 \mathrm{mV}$ to | 22 mV | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{array}{r} 0.6 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 0.8 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 0.7 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 0.7 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ 4.3 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \end{array}$ |  |
|  | $>22 \mathrm{mV}$ to | 70 mV | $>1.2 \mathrm{kHz}$ to 120 kHz $>120 \mathrm{kHz}$ to 500 kHz $>500 \mathrm{kHz}$ to 1.2 MHz $>1.2 \mathrm{MHz}$ to 2 MHz $>2 \mathrm{MHz}$ to 10 MHz $>10 \mathrm{MHz}$ to 20 MHz $>20 \mathrm{MHz}$ to 30 MHz | $\begin{aligned} & 0.6 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ & 1.2 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ & 1.8 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 4.1 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>70 \mathrm{mV}$ to | 220 mV | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{aligned} & 0.5 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \\ & 0.5 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 1.2 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 1.8 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \\ & 4.1 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>220 \mathrm{mV}$ to | 700 mV | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{aligned} & 0.4 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.4 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 1.2 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ & 1.8 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \\ & 4.1 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \end{aligned}$ |  |

## DAkkS

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Sources | $>700 \mathrm{mV}$ to | 2.2 V | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{array}{r} 0.4 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ 0.4 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ 0.61 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ 0.61 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ 1.2 \cdot 10^{-3} \cdot U+2 \mu \mathrm{~V} \\ 1.8 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \\ 4.1 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \end{array}$ | $U=$ measured value <br> Calibration with calibrator Fluke 5790A (Wide Band) in direct measurement |
|  | $>2.2 \mathrm{~V}$ to | 7 V | $\begin{array}{r} >1.2 \mathrm{kHz} \text { to } 120 \mathrm{kHz} \\ >120 \mathrm{kHz} \text { to } 500 \mathrm{kHz} \\ >500 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz} \\ >1.2 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ >2 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \\ >10 \mathrm{MHz} \text { to } 20 \mathrm{MHz} \\ >20 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \end{array}$ | $\begin{array}{r} 0.4 \cdot 10^{-3} \cdot U+11 \mu \mathrm{~V} \\ 0.4 \cdot 10^{-3} \cdot U+11 \mu \mathrm{~V} \\ 0.61 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.61 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 1.2 \cdot 10^{-3} \cdot U+4 \mu \mathrm{~V} \\ 1.8 \cdot 10^{-3} \cdot U+3 \mu \mathrm{~V} \\ 4.1 \cdot 10^{-3} \cdot U+1 \mu \mathrm{~V} \end{array}$ |  |
| AC current Measurement instruments | 0.2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 90 nA | Calibration with calibrator Fluke 5700A / 5725A |
|  | 0.5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.14 \mu \mathrm{~A}$ |  |
|  | 1 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.24 \mu \mathrm{~A}$ |  |
|  | 2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.4 \mu \mathrm{~A}$ |  |
|  | 5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $1 \mu \mathrm{~A}$ |  |
|  | 10 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $2 \mu \mathrm{~A}$ |  |
|  | 20 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $3 \mu \mathrm{~A}$ |  |
|  | 50 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $10 \mu \mathrm{~A}$ |  |
|  | 0.1 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $20 \mu \mathrm{~A}$ | Calibration with calibrator <br> Fluke 5700A / 5725A |
|  | 0.2 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $40 \mu \mathrm{~A}$ |  |
|  | 0.5 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 0.12 mA |  |
|  | 1 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 0.22 mA |  |
|  | 2 A |  | $\begin{aligned} & 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \\ & 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{aligned}$ | $0.4 \mathrm{~mA}$ |  |
|  | 3 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 1 mA |  |
|  | 5 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 1.5 mA |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure |  | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC current Measurement instruments | 10 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ |  | 3 mA | Calibration with calibrator Fluke 5700A / 5725A $I=$ measured value |
|  | $50 \mu \mathrm{~A}$ to | $220 \mu \mathrm{~A}$ | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ > & 40 \mathrm{~Hz} \text { to } \\ > & 1 \mathrm{kHz} \text { to } \\ > & 5 \mathrm{kHz} \text { to } \end{aligned}$ | 20 Hz <br> 40 Hz <br> 1 kHz <br> 5 kHz <br> 10 kHz | $\begin{gathered} 0.81 \cdot 10^{-3} \cdot I+50 \mathrm{nA} \\ 0.44 \cdot 10^{-3} \cdot I+50 \mathrm{nA} \\ 0.16 \cdot 10^{-3} \cdot I+50 \mathrm{nA} \\ 0.7 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ 2 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~A} \end{gathered}$ |  |
|  | $>220 \mu \mathrm{~A}$ to | 2.2 mA | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ > & 40 \mathrm{~Hz} \text { to } \\ > & 1 \mathrm{kHz} \text { to } \\ > & 5 \mathrm{kHz} \text { to } \end{aligned}$ | 20 Hz <br> 40 Hz <br> 1 kHz <br> 5 kHz <br> 10 kHz | $\begin{array}{r} 0.81 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ 0.44 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ 0.16 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ 0.7 \cdot 10^{-3} \cdot I+0.8 \mu \mathrm{~A} \\ 2 \cdot 10^{-3} \cdot I+1.5 \mu \mathrm{~A} \end{array}$ |  |
|  | $>2.2 \mathrm{~mA}$ to | 22 mA | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ > & 40 \mathrm{~Hz} \text { to } \\ > & 1 \mathrm{kHz} \text { to } \\ > & 5 \mathrm{kHz} \text { to } \end{aligned}$ | 20 Hz <br> 40 Hz <br> 1 kHz <br> 5 kHz <br> 10 kHz | $\begin{gathered} 0.81 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.44 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.16 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.7 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ 2 \cdot 10^{-3} \cdot I+15 \mu \mathrm{~A} \end{gathered}$ |  |
|  | $>22 \mathrm{~mA}$ to | 220 mA | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ > & 40 \mathrm{~Hz} \text { to } \\ > & 1 \mathrm{kHz} \text { to } \\ > & 5 \mathrm{kHz} \text { to } \end{aligned}$ | 20 Hz 40 Hz <br> 1 kHz <br> 5 kHz <br> 10 kHz | $\begin{aligned} & 0.81 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ & 0.44 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ & 0.16 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ & 0.7 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 2 \cdot 10^{-3} \cdot I+0.15 \mathrm{~mA} \end{aligned}$ |  |
|  | $>220 \mathrm{~mA}$ to | 2.2 A | $\begin{array}{ll} >20 \mathrm{~Hz} & \text { to } \\ >1 \mathrm{kHz} & \text { to } \\ >5 \mathrm{kHz} & \text { to } \end{array}$ | $\begin{array}{r} 1 \mathrm{kHz} \\ 5 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.75 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 0.87 \cdot 10^{-3} \cdot I+0.14 \mathrm{~mA} \\ & 11 \cdot 10^{-3} \cdot I+0.24 \mathrm{~mA} \end{aligned}$ |  |
|  | $>2.2 \mathrm{~A}$ to | 11 A | $\begin{array}{ll} >40 \mathrm{~Hz} & \text { to } \\ >1 \mathrm{kHz} & \text { to } \\ >5 \mathrm{kHz} & \text { to } \end{array}$ | $\begin{array}{r} 1 \mathrm{kHz} \\ 5 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.45 \cdot 10^{-3} \cdot I+0.38 \mathrm{~mA} \\ 0.98 \cdot 10^{-3} \cdot I+0.53 \mathrm{~mA} \\ 4 \cdot 10^{-3} \cdot I+0.9 \mathrm{~mA} \end{gathered}$ |  |
| AC current Measurement instruments converter method, Toroid | $\begin{aligned} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | 45 Hz to | 65 Hz | $\begin{aligned} & 5 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 5 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \\ & 5 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \end{aligned}$ | $I=$ measured value <br> Calibration with calibrator Fluke 5500A/Coil |
|  | $\begin{aligned} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | $>65 \mathrm{~Hz}$ to 440 Hz |  | $\begin{aligned} & 11 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 11 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \\ & 11 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \end{aligned}$ |  |
| AC current Measurement instruments converter method | $\begin{aligned} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | 45 Hz to | 65 Hz | $\begin{aligned} & 8 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 8 \cdot 10^{-3} \cdot I+0.3 \mathrm{~A} \\ & 8 \cdot 10^{-3} \cdot I+1 \mathrm{~A} \end{aligned}$ |  |
|  | $\begin{aligned} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | $>65 \mathrm{~Hz}$ to | 440 Hz | $\begin{aligned} & 14 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 14 \cdot 10^{-3} \cdot I+0.3 \mathrm{~A} \\ & 14 \cdot 10^{-3} \cdot I+1 \mathrm{~A} \end{aligned}$ |  |
| AC current Sources | 1 mA to | 10 mA | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ > & 40 \mathrm{~Hz} \text { to } \end{aligned}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.23 \cdot 10^{-3} \cdot I+0.3 \mu \mathrm{~A} \\ 82 \cdot 10^{-6} \cdot I+0.4 \mu \mathrm{~A} \\ 50 \cdot 10^{-6} \cdot I+0.4 \mu \mathrm{~A} \end{array}$ | $I=$ measured value <br> Direct measurement with <br> Shunt Fluke A40 |
|  | $>10 \mathrm{~mA}$ to | 20 mA | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ >40 \mathrm{~Hz} & \text { to } \end{aligned}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.24 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~A} \\ 95 \cdot 10^{-6} \cdot I+0.3 \mu \mathrm{~A} \\ 60 \cdot 10^{-6} \cdot I+0.5 \mu \mathrm{~A} \end{array}$ |  |

Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC current Sources | $>20 \mathrm{~mA}$ to | 50 mA | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ 40 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.26 \cdot 10^{-3} \cdot I+0.8 \mu \mathrm{~A} \\ 0.1 \cdot 10^{-3} \cdot I+1.4 \mu \mathrm{~A} \\ 70 \cdot 10^{-6} \cdot I+1.6 \mu \mathrm{~A} \end{array}$ | $I=$ measured value <br> Direct measurement <br> Shunt Fluke A40 |
|  | $>50 \mathrm{~mA}$ to | 100 mA | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ 40 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.24 \cdot 10^{-3} \cdot I+0.9 \mu \mathrm{~A} \\ 0.1 \cdot 10^{-3} \cdot I+2 \mu \mathrm{~A} \\ 70 \cdot 10^{-6} \cdot I+2.5 \mu \mathrm{~A} \end{gathered}$ |  |
|  | $>100 \mathrm{~mA}$ to | 200 mA | $\begin{array}{rlr}  & 10 \mathrm{~Hz} \text { to } & 20 \mathrm{~Hz} \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ \hline \end{array}$ | $\begin{gathered} 0.24 \cdot 10^{-3} \cdot I+1.5 \mu \mathrm{~A} \\ 0.1 \cdot 10^{-3} \cdot I+3 \mu \mathrm{~A} \\ 70 \cdot 10^{-6} \cdot I+4 \mu \mathrm{~A} \end{gathered}$ |  |
|  | $>200 \mathrm{~mA}$ to | 500 mA | $\begin{array}{rlr}  & 10 \mathrm{~Hz} \text { to } & 20 \mathrm{~Hz} \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.24 \cdot 10^{-3} \cdot I+30 \mu \mathrm{~A} \\ 0.11 \cdot 10^{-3} \cdot I+40 \mu \mathrm{~A} \\ 95 \cdot 10^{-6} \cdot I+40 \mu \mathrm{~A} \end{array}$ |  |
|  | $>500 \mathrm{~mA}$ to | 1 A |  | $\begin{aligned} & 0.25 \cdot 10^{-3} \cdot I+25 \mu \mathrm{~A} \\ & 0.12 \cdot 10^{-3} \cdot I+41 \mu \mathrm{~A} \\ & 0.95 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \end{aligned}$ |  |
|  | $>1 \mathrm{~A}$ to | 2 A | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } \\ > & 20 \mathrm{~Hz} \\ > & 40 \mathrm{~Hz} & \text { to } \\ \hline \end{array}$ | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot I+32 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ 90 \cdot 10^{-6} \cdot I+65 \mu \mathrm{~A} \end{array}$ |  |
|  | $>2 \mathrm{~A}$ to | 3 A | $\begin{array}{rlr}  & 10 \mathrm{~Hz} \text { to } & 20 \mathrm{~Hz} \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ 40 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{array}{r} \hline 0.23 \cdot 10^{-3} \cdot I+0.1 \mathrm{~mA} \\ 75 \cdot 10^{-6} \cdot I+0.18 \mathrm{~mA} \\ 40 \cdot 10^{-6} \cdot I+ \\ 0.24 \mathrm{~mA} \end{array}$ |  |
|  | $>3 \mathrm{~A}$ to | 5 A | $\begin{array}{rlr}  & 10 \mathrm{~Hz} \text { to } & 20 \mathrm{~Hz} \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ 40 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.23 \cdot 10^{-3} \cdot I+0.13 \mathrm{~mA} \\ 75 \cdot 10^{-6} \cdot I+0.13 \mathrm{~mA} \\ 40 \cdot 10^{-6} \cdot I+0.13 \mathrm{~mA} \end{array}$ |  |
|  | $>5 \mathrm{~A}$ to | 10 A | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } \\ > & 20 \mathrm{~Hz} & \text { to } \\ > & 40 \mathrm{~Hz} \\ 40 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} 0.24 \cdot 10^{-3} \cdot I+53 \mu \mathrm{~A} \\ 95 \cdot 10^{-6} \cdot I+0.15 \mathrm{~mA} \\ 50 \cdot 10^{-6} \cdot I+0.22 \mathrm{~mA} \end{aligned}$ |  |
|  | $>10 \mathrm{~A}$ to | 20 A | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{~Hz} & \text { to } & 40 \mathrm{~Hz} \\ >40 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & \hline 0.24 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 95 \cdot 10^{-6} \cdot I+ 0.15 \mathrm{~mA} \\ & 50 \cdot 10^{-6} \cdot I+ 0.22 \mathrm{~mA} \end{aligned}$ |  |
|  | 0.2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 90 nA | Substitution method with calibrator Fluke 5700A / 5725A |
|  | 0.5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.14 \mu \mathrm{~A}$ |  |
|  | 1 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.24 \mu \mathrm{~A}$ |  |
|  | 2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.4 \mu \mathrm{~A}$ |  |
|  | 5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $1 \mu \mathrm{~A}$ |  |
|  | 10 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $2 \mu \mathrm{~A}$ |  |
|  | 20 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $3 \mu \mathrm{~A}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)


Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

| Permanent Laboratory - Darmstadt |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Capacitance capacitors | $1 \mathrm{pF} ; 10 \mathrm{pF}$ | 10 kHz | $0.63 \cdot 10^{-3}$ | Direct measurement of capacitors |
|  | 100 pF ; 1000 pF | $\begin{gathered} 1 \mathrm{kHz} \text { and } 10 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 0.63 \cdot 10^{-3} \\ & 0.67 \cdot 10^{-3} \end{aligned}$ |  |
|  | $\begin{gathered} 10 \mathrm{nF} ; 100 \mathrm{nF} \\ 1 \mu \mathrm{~F} \end{gathered}$ | $\begin{aligned} & 1 \mathrm{kHz} \\ & 1 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 0.63 \cdot 10^{-3} \\ & 0.61 \cdot 10^{-3} \end{aligned}$ |  |
|  | $1 \mathrm{pF} ; 10 \mathrm{pF}$ | 10 kHz | $0.26 \cdot 10^{-3}$ | Calibration of capacitors via Substitution method |
|  | 100 pF ; 1000 pF | $\begin{gathered} 1 \mathrm{kHz} \text { and } 10 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 0.26 \cdot 10^{-3} \\ & 0.36 \cdot 10^{-3} \end{aligned}$ |  |
|  | $10 \mathrm{nF} ; 100 \mathrm{nF} ; 1 \mu \mathrm{~F}$ | 1 kHz | $0.26 \cdot 10^{-3}$ |  |
| Capacitance bridges | $1 \mathrm{pF} ; 10 \mathrm{pF}$ | 10 kHz | $0.25 \cdot 10^{-3}$ |  |
|  | 100 pF ; 1000 pF | $\begin{gathered} 1 \mathrm{kHz} \text { and } 10 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 0.25 \cdot 10^{-3} \\ & 0.30 \cdot 10^{-3} \end{aligned}$ |  |
|  | $10 \mathrm{nF} ; 100 \mathrm{nF} ; 1 \mu \mathrm{~F}$ | 1 kHz | $0.25 \cdot 10^{-3}$ |  |
| Inductance Inductors | $\begin{gathered} 100 \mu \mathrm{H} \\ 1 \mathrm{mH} ; 10 \mathrm{mH} ; 100 \mathrm{mH} ; \\ 1 \mathrm{H} \end{gathered}$ | 1 kHz and 10 kHz 100 Hz and 1 kHz | $\begin{aligned} & 1.5 \cdot 10^{-3} \\ & 1.5 \cdot 10^{-3} \end{aligned}$ | Direct measurement of inductances |
| Inductors | $100 \mu \mathrm{H}$ | 1 kHz <br> 10 kHz | $\begin{aligned} & 0.50 \cdot 10^{-3} \\ & 0.55 \cdot 10^{-3} \\ & \hline \end{aligned}$ | Calibration of inductances via Substitution method |
|  | $\begin{gathered} 1 \mathrm{mH} ; 10 \mathrm{mH} ; 100 \mathrm{mH} ; \\ 1 \mathrm{H} \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & \hline 0.50 \cdot 10^{-3} \\ & 0.50 \cdot 10^{-3} \\ & \hline \end{aligned}$ |  |
| Inductance bridges | $100 \mu \mathrm{H}$ | $\begin{gathered} 1 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 0.50 \cdot 10^{-3} \\ & 0.50 \cdot 10^{-3} \end{aligned}$ |  |
|  | $\begin{gathered} 1 \mathrm{mH} ; 10 \mathrm{mH} ; 100 \mathrm{mH} ; \\ 1 \mathrm{H} \end{gathered}$ | $100 \text { Hz }$ <br> 1 kHz | $\begin{aligned} & 0.50 \cdot 10^{-3} \\ & 0.50 \cdot 10^{-3} \end{aligned}$ |  |
| DC voltage Square wave generators | 0 V to $<0.12 \mathrm{~V}$ <br> 0.12 V to $<1.2 \mathrm{~V}$ <br> 1.2 V to 12 V <br> $>12 \mathrm{~V}$ to 120 V <br> $>120 \mathrm{~V}$ to 1000 V | DC | $\begin{gathered} 19 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 10 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 7 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 10 \cdot 10^{-6} \cdot U+30 \mu \mathrm{~V} \\ 12 \cdot 10^{-6} \cdot U+0.10 \mathrm{mV} \end{gathered}$ | $U=$ measured value Determination with DMM; HP 3458 |
| Square wave voltage Square wave generators | 0 V to $<0.12 \mathrm{~V}$ <br> 0.12 V to $<1.2 \mathrm{~V}$ <br> 1.2 V to 12 V <br> $>12 \mathrm{~V}$ to 120 V <br> $>120 \mathrm{~V}$ to 1000 V | $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & 0.3 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \end{aligned}$ | Determination with Sample-DMM; HP 3458 |
|  | $\begin{array}{rlr} 0.06 \mathrm{~V} & \text { to } & <0.12 \mathrm{~V} \\ 0.12 \mathrm{~V} & \text { to } & <1.2 \mathrm{~V} \\ 1.2 \mathrm{~V} & \text { to } & 12 \mathrm{~V} \\ >12 \mathrm{~V} & \text { to } & 120 \mathrm{~V} \end{array}$ | $10 \mathrm{kHz}, 100 \mathrm{kHz}$ | $\begin{aligned} & 0.7 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+0.9 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+9 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+90 \mathrm{mV} \end{aligned}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS



This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Darmstadt

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| HF-voltage HF-Measurement instruments HF-Generators | 0.5 V to 1 V | $\begin{array}{\|rr}  & 100 \mathrm{kHz} \text { to } \\ >10 \mathrm{MHz} \\ > & 10 \mathrm{MHz} \text { to } \\ >30 \mathrm{MHz} \text { to } & 50 \mathrm{MHz} \\ >50 \mathrm{MHz} \text { to } & 500 \mathrm{MHz} \\ >500 \mathrm{MHz} \text { to } & 1 \mathrm{GHz} \end{array}$ | $\begin{array}{r} 2 \cdot 10^{-3} \cdot U \\ 3 \cdot 10^{-3} \cdot U \\ 5 \cdot 10^{-3} \cdot U \\ 10 \cdot 10^{-3} \cdot U \\ 15 \cdot 10^{-3} \cdot U \end{array}$ | Voltage generation with T-Piece, N-Connector, the uncertainty rises with different connectors |
| HF-voltage HF-Measurement instruments | 0.1 V to 1 V | $\begin{array}{rr} 100 \mathrm{kHz} \text { to } & 10 \mathrm{MHz} \\ >1 \mathrm{GHz} \text { to } & 3 \mathrm{GHz} \end{array}$ | $\begin{aligned} & 15 \cdot 10^{-3} \cdot U \\ & 35 \cdot 10^{-3} \cdot U \end{aligned}$ | Direct measurement at Generator R\&S SMT-03 |
|  | 0.1 V to 1 V | $\begin{array}{rr} \hline 100 \mathrm{kHz} \text { to } & 1 \mathrm{GHz} \\ >1 \mathrm{GHz} \text { to } & 3 \mathrm{GHz} \\ >3 \mathrm{GHz} \text { to } & 18 \mathrm{GHz} \end{array}$ | $\begin{aligned} & 15 \cdot 10^{-3} \cdot U \\ & 30 \cdot 10^{-3} \cdot U \\ & 45 \cdot 10^{-3} \cdot U \end{aligned}$ | Voltage generation with power splitter; voltage metering with R\&S Z-51 |
| Time and Frequency Frequency | $100 \mathrm{kHz} ; 1 \mathrm{MHz}$ <br> $5 \mathrm{MHz} ; 10 \mathrm{MHz}$ | Deviation measurement of phasing time with test time $\geq 2 \mathrm{~h}$ | $5 \cdot 10^{-11} \cdot f$ | $f=$ frequency |
|  | 1 Hz to 3 GHz | Digital frequencymeasurement on count basis | $1 \cdot 10^{-10} \cdot f+U_{\text {Tf }}$ | $U_{\mathrm{Tf}}=$ trigger uncertainty |
|  | 3 GHz to 26.5 GHz |  | $2 \cdot 10^{-10} \cdot f+1 \mathrm{~Hz}$ |  |
|  | 1 Hz to 10 kHz |  | 3.3 mHz | Optical procedure (tachometer) |
| Time interval | 10 ms to 10 s |  | $6 \cdot 10^{-11} \cdot t+2 \mathrm{~ns}+U_{\mathrm{Tt}}$ | $\begin{aligned} & U_{\mathrm{Tt}}=\text { trigger uncertainty } \\ & t=\text { time interval } \end{aligned}$ |

On-site Calibration - Darmstadt

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC and Low frequency <br> DC voltage <br> Measurement instruments | $\begin{aligned} 0 \mathrm{mV} & \text { to } \\ >0.22 \mathrm{~V} & \text { to } \\ >2.2 \mathrm{~V} & \text { to } \\ >11 \mathrm{~V} & \text { to } \\ >22 \mathrm{~V} & \text { to } \\ >220 \mathrm{~V} & \text { to } \end{aligned}$ | $\begin{array}{r} 0.22 \mathrm{~V} \\ 2.2 \mathrm{~V} \\ 11 \mathrm{~V} \\ 22 \mathrm{~V} \\ 220 \mathrm{~V} \\ 1.1 \mathrm{kV} \end{array}$ |  | $\begin{gathered} 8 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 9 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 10 \cdot 10^{-6} \cdot U+6 \mu \mathrm{~V} \\ 8 \cdot 10^{-6} \cdot U+20 \mu \mathrm{~V} \\ 12 \cdot 10^{-6} \cdot U+0.25 \mathrm{mV} \\ 12 \cdot 10^{-6} \cdot U+1.3 \mathrm{mV} \end{gathered}$ | $U=$ measured value <br> Calibration with <br> Calibrator Fluke 5700A |
| DC voltage Sources | $\begin{array}{rr} 0 \mathrm{mV} & \text { to } \\ >0.12 \mathrm{~V} & \text { to } \\ >1.2 \mathrm{~V} & \text { to } \\ >12 \mathrm{~V} & \text { to } \\ >100 \mathrm{~V} & \text { to } \\ >200 \mathrm{~V} & \text { to } \\ >500 \mathrm{~V} & \text { to } \\ >700 \mathrm{~V} & \text { to } \end{array}$ | $\begin{array}{r} 0.12 \mathrm{~V} \\ 1.2 \mathrm{~V} \\ 12 \mathrm{~V} \\ 100 \mathrm{~V} \\ 200 \mathrm{~V} \\ 500 \mathrm{~V} \\ 700 \mathrm{~V} \\ 1 \mathrm{kV} \end{array}$ |  | $\begin{gathered} 6 \cdot 10^{-6} \cdot U+2.5 \mu \mathrm{~V} \\ 5.5 \cdot 10^{-6} \cdot U+2.5 \mu \mathrm{~V} \\ 10 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ 15 \cdot 10^{-6} \cdot U+80 \mu \mathrm{~V} \\ 8 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \\ 11 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \\ 14 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \\ 21 \cdot 10^{-6} \cdot U+0.17 \mathrm{mV} \end{gathered}$ | Calibration with DMM HP 3458A |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt



This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| DC resistance Measurement instruments | $\begin{array}{r} 0.01 \Omega \\ 1 \Omega \\ 1.9 \Omega \\ 10 \Omega \\ 19 \Omega \\ 100 \Omega \\ 190 \Omega \\ 1 \mathrm{k} \Omega \\ 1.9 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 19 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 190 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ 1.9 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 19 \mathrm{M} \Omega \\ 100 \mathrm{M} \Omega \end{array}$ |  | $\begin{array}{r} \hline 0.13 \cdot 10^{-3} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 42 \cdot 10^{-6} \cdot R \\ 49 \cdot 10^{-6} \cdot R \\ 27 \cdot 10^{-6} \cdot R \\ 24 \cdot 10^{-6} \cdot R \\ 19 \cdot 10^{-6} \cdot R \\ 19 \cdot 10^{-6} \cdot R \\ 18 \cdot 10^{-6} \cdot R \\ 18 \cdot 10^{-6} \cdot R \\ 21 \cdot 10^{-6} \cdot R \\ 29 \cdot 10^{-6} \cdot R \\ 28 \cdot 10^{-6} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 82 \cdot 10^{-6} \cdot R \\ 0.64 \cdot 10^{-3} \cdot R \\ 0.61 \cdot 10^{-3} \cdot R \end{array}$ | Calibration at $0.01 \Omega$ with Shunt Fluke Y 5020, Calibration starting at $1 \Omega$ with Calibrator Fluke 5700A |
|  | $0.01 \Omega$ to $>0.1 \Omega$ to |  | $\begin{aligned} & 0.1 \cdot 10^{-3} \cdot R+20 \mu \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+0.2 \mathrm{~m} \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+2 \mathrm{~m} \Omega \end{aligned}$ | Calibration with Shunt Fluke Y5020 and HP 3458 via current/voltage method |
|  | $10 \Omega$ to $100 \Omega$ <br> $>100 \Omega$ to $1 \mathrm{k} \Omega$ <br> $>1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ <br> $>10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ <br> $>100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ <br> $>1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$ <br> $>10 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$ <br> $>100 \mathrm{M} \Omega$ to $10 \mathrm{G} \Omega$ |  | $\begin{aligned} & 0.1 \cdot 10^{-3} \cdot R+20 \mathrm{~m} \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+0.2 \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+2 \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+20 \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+0.2 \mathrm{k} \Omega \\ & 0.1 \cdot 10^{-3} \cdot R+2 \mathrm{k} \Omega \\ & 0.6 \cdot 10^{-3} \cdot R+20 \mathrm{k} \Omega \\ & 7 \cdot 10^{-3} \cdot R+0.2 \mathrm{M} \Omega \\ & \hline \end{aligned}$ | Calibration with a resistor and a multimeter via substitution method |
| DC power Measurement instruments |  | $\begin{array}{rr} \hline 3.3 \mathrm{~mA} \text { to } & <0.33 \mathrm{~A} \\ 0.33 \mathrm{~A} \text { to } & <3 \mathrm{~A} \\ 3 \mathrm{~A} \text { to } & 20.5 \mathrm{~A} \end{array}$ | $\begin{array}{r} 0.7 \cdot 10^{-3} \cdot P \\ 0.7 \cdot 10^{-3} \cdot P \\ 1 \cdot 10^{-3} \cdot P \end{array}$ | $P=$ measured value <br> Calibration with Calibrator Fluke 5520A |
| AC voltage Measurement instruments | 0.1 V | $\begin{gathered} 20 \mathrm{~Hz} ; 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & 25 \mu \mathrm{~V} \\ & 25 \mu \mathrm{~V} \\ & 40 \mu \mathrm{~V} \\ & 50 \mu \mathrm{~V} \end{aligned}$ | Calibration with Calibrator Fluke 5700A |
|  | 1 V | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} ; 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} ; 70 \mathrm{kHz} ; 100 \mathrm{kHz} \\ 200 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{gathered}$ | 0.1 mV <br> $70 \mu \mathrm{~V}$ <br> $80 \mu \mathrm{~V}$ <br> 0.1 mV <br> 0.2 mV <br> 1 mV <br> 2 mV |  |
|  | 4 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.25 mV |  |
|  | 6 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.35 mV |  |
|  | 8 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.4 mV |  |

Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| AC voltage Measurement instruments | 10 V | 20 Hz $40 \mathrm{~Hz} ; 1 \mathrm{kHz}$ $10 \mathrm{kHz} ; 20 \mathrm{kHz}$ 50 kHz $70 \mathrm{kHz} ; 100 \mathrm{kHz}$ 200 kHz 500 kHz 1 MHz | 0.7 mV <br> 0.5 mV <br> 0.6 mV <br> 1 mV <br> 1.2 mV <br> 3 mV <br> 10 mV <br> 15 mV | Calibration with Calibrator Fluke 5700A <br> $U=$ measured value |
|  | 13 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.5 mV |  |
|  | 15 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.8 mV |  |
|  | 18 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1 mV |  |
|  | 20 V | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1.1 mV |  |
|  | 100 V | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 70 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | 10 mV <br> 7 mV <br> 7 mV <br> 20 mV <br> 30 mV <br> 37 mV |  |
|  | 700 V | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 80 mV |  |
|  | 1000 V | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 0.1 V |  |
|  | 2 mV to 2.2 mV |  | $\begin{array}{r} 0.61 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.24 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.13 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 0.41 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 1.4 \cdot 10^{-3} \cdot U+18 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \\ 3 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \end{array}$ |  |
|  | $>2.2 \mathrm{mV}$ to 22 mV |  | $\begin{array}{r} 0.59 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 0.22 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 0.11 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 0.39 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ 1 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \\ 1.4 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 3.8 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \end{array}$ |  |
|  | $>22 \mathrm{mV}$ to 220 mV |  | $\begin{gathered} 0.63 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 0.25 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.12 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.37 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.9 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \\ 1.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 2 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 3.8 \cdot 10^{-3} \cdot U+0.13 \mathrm{mV} \end{gathered}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt



Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

Annex to the Partial Accreditation Certificate D-K-15015-01-01

## On-site Calibration - Darmstadt

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage sources | 15 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 0.8 mV |  |
|  | 18 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1 mV |  |
|  | 20 V |  | $1 \mathrm{kHz} ; 10 \mathrm{kHz}$ | 1.1 mV |  |
|  | 100 V |  | $\begin{gathered} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} ; 1 \mathrm{kHz} \\ 10 \mathrm{kHz} ; 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 70 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{gathered}$ | 10 mV <br> 7 mV <br> 7 mV <br> 20 mV <br> 30 mV <br> 37 mV |  |
|  | 700 V |  | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 80 mV |  |
|  | 1000 V |  | $50 \mathrm{~Hz} ; 500 \mathrm{~Hz} ; 1 \mathrm{kHz}$ | 0.1 V |  |
|  | 1 kV to | 6 kV | 50 Hz | $2 \cdot 10^{-3} \cdot U$ | $U=$ measured value <br> Calibration with multimeter and high frequency divider |
|  | 0.1 V to | 0.22 V | 20 Hz to $<40 \mathrm{~Hz}$ 40 Hz to 20 kHz $>20 \mathrm{kHz}$ to 50 kHz $>50 \mathrm{kHz}$ to 100 kHz | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.12 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.37 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.9 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \end{array}$ | $U=$ Measured value |
|  | $>0.22 \mathrm{~V}$ to | 2.2 V |  | $\begin{gathered} 0.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 80 \cdot 10^{-6} \cdot U+25 \mu \mathrm{~V} \\ 0.15 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ 0.3 \cdot 10^{-3} \cdot U+90 \mu \mathrm{~V} \\ 0.5 \cdot 10^{-3} \cdot U+0.17 \mathrm{mV} \\ 1.3 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ 2.5 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV} \end{gathered}$ |  |
|  | $>2.2 \mathrm{~V}$ to | 22 V |  | $\begin{gathered} 0.2 \cdot 10^{-3} \cdot U+0.35 \mathrm{mV} \\ 0.1 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+0.28 \mathrm{mV} \\ 0.3 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ 0.6 \cdot 10^{-3} \cdot U+2 \mathrm{mV} \\ 1.6 \cdot 10^{-3} \cdot U+5.5 \mathrm{mV} \\ 3.2 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{gathered}$ |  |
|  | $>22 \mathrm{~V}$ to | 220 V | 20 Hz to $<40 \mathrm{~Hz}$ 40 Hz to 20 kHz $>20 \mathrm{kHz}$ to 50 kHz $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.22 \cdot 10^{-3} \cdot U+3.5 \mathrm{mV} \\ 0.12 \cdot 10^{-3} \cdot U+1.7 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+4.8 \mathrm{mV} \\ 0.7 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \end{gathered}$ |  |
|  | $>220 \mathrm{~V}$ to | 1.1 kV | $\begin{array}{rlr} 40 \mathrm{~Hz} & \text { to }<50 \mathrm{~Hz} \\ 50 \mathrm{~Hz} & \text { to } & 1 \mathrm{kHz} \\ >1 \mathrm{kHz} & \text { to } 20 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 90 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 90 \cdot 10^{-6} \cdot U+25 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{array}$ |  |
| AC current Measurement instruments | 0.2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 90 nA | Calibration with Calibrator Fluke 5700A / 5725A |
|  | 0.5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.14 \mu \mathrm{~A}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| AC current Measurement instruments | 1 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.24 \mu \mathrm{~A}$ | Calibration with Calibrator Fluke 5700A / 5725A <br> $I=$ measured value <br> Calibration with Calibrator Fluke 5700A / 5725A <br> Calibration with Calibrator Fluke 5500A / Coil |
|  | 2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.4 \mu \mathrm{~A}$ |  |
|  | 5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $1 \mu \mathrm{~A}$ |  |
|  | 10 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $2 \mu \mathrm{~A}$ |  |
|  | 20 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $3 \mu \mathrm{~A}$ |  |
|  | 50 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $10 \mu \mathrm{~A}$ |  |
|  | 0.1 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $20 \mu \mathrm{~A}$ |  |
|  | 0.2 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $40 \mu \mathrm{~A}$ |  |
|  | 0.5 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 0.12 mA |  |
|  | 1 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 0.22 mA |  |
|  | 2 A |  | $\begin{gathered} 40 \mathrm{~Hz} \\ 100 \mathrm{~Hz} \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $\begin{array}{r} \hline 0.4 \mathrm{~mA} \\ 0.45 \mathrm{~mA} \\ 0.5 \mathrm{~mA} \\ \hline \end{array}$ |  |
|  | 3 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 1 mA |  |
|  | 5 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 1.5 mA |  |
|  | 10 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 3 mA |  |
|  | $\begin{aligned} 220 \mu \mathrm{~A} & \text { to } \\ >2.2 \mathrm{~mA} & \text { to } \\ >22 \mathrm{~mA} & \text { to } \\ >220 \mathrm{~mA} & \text { to } \\ >2.2 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 2.2 \mathrm{~mA} \\ 22 \mathrm{~mA} \\ 220 \mathrm{~mA} \\ 2.2 \mathrm{~A} \\ 11 \mathrm{~A} \end{array}$ | 40 Hz to 1 kHz | $\begin{aligned} & 0.15 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ & 0.15 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ & 0.37 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ & 0.75 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 0.44 \cdot 10^{-3} \cdot I+0.35 \mathrm{~mA} \end{aligned}$ |  |
| AC current <br> Measurement instruments converter method, toroid | $\begin{aligned} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | 45 Hz to 65 Hz | $\begin{aligned} & 5 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 5 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \\ & 5 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \end{aligned}$ |  |
|  | $\begin{array}{rr} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{array}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | $>65 \mathrm{~Hz}$ to 440 Hz | $\begin{aligned} & 11 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 11 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \\ & 11 \cdot 10^{-3} \cdot I+0.2 \mathrm{~A} \end{aligned}$ |  |
| AC current <br> Measurement instruments converter method | $\begin{array}{rr} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{array}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | 45 Hz to 65 Hz | $\begin{aligned} & 8 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 8 \cdot 10^{-3} \cdot I+0.3 \mathrm{~A} \\ & 8 \cdot 10^{-3} \cdot I+1 \mathrm{~A} \end{aligned}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt

| Calibration and Measurement Capabilities ( CMC ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Ran |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| AC current <br> Measurement instruments converter method | $\begin{aligned} 10 \mathrm{~A} & \text { to } \\ >16.5 \mathrm{~A} & \text { to } \\ >150 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 16.5 \mathrm{~A} \\ 150 \mathrm{~A} \\ 1025 \mathrm{~A} \end{array}$ | $>65 \mathrm{~Hz}$ to 440 Hz | $\begin{aligned} & 14 \cdot 10^{-3} \cdot I+0.1 \mathrm{~A} \\ & 14 \cdot 10^{-3} \cdot I+0.3 \mathrm{~A} \\ & 14 \cdot 10^{-3} \cdot I+1 \mathrm{~A} \end{aligned}$ | Calibration with Calibrator Fluke 5500A / Coil |
| AC current Sources | 0.2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} \text {; } \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 90 nA | substitution method with Calibrator <br> Fluke 5700A / 5725A <br> $I=$ measured value |
|  | 0.5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.14 \mu \mathrm{~A}$ |  |
|  | 1 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.24 \mu \mathrm{~A}$ |  |
|  | 2 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $0.4 \mu \mathrm{~A}$ |  |
|  | 5 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $1 \mu \mathrm{~A}$ |  |
|  | 10 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $2 \mu \mathrm{~A}$ |  |
|  | 20 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $3 \mu \mathrm{~A}$ |  |
|  | 50 mA |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $10 \mu \mathrm{~A}$ |  |
|  | 0.1 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $20 \mu \mathrm{~A}$ |  |
|  | 0.2 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $40 \mu \mathrm{~A}$ |  |
|  | 0.5 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 0.12 mA |  |
|  | 1 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 0.22 mA |  |
|  | 2 A |  | $\begin{gathered} 40 \mathrm{~Hz} \\ 100 \mathrm{~Hz} \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | $\begin{array}{r} 0.4 \mathrm{~mA} \\ 0.45 \mathrm{~mA} \\ 0.5 \mathrm{~mA} \\ \hline \end{array}$ |  |
|  | 3 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 1 mA |  |
|  | 5 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 1.5 mA |  |
|  | 10 A |  | $\begin{gathered} 40 \mathrm{~Hz} ; 100 \mathrm{~Hz} ; \\ 500 \mathrm{~Hz} ; 1 \mathrm{kHz} \end{gathered}$ | 3 mA |  |
|  | $\begin{aligned} 220 \mu \mathrm{~A} & \text { to } \\ >2.2 \mathrm{~mA} & \text { to } \\ >22 \mathrm{~mA} & \text { to } \\ >220 \mathrm{~mA} & \text { to } \\ >2.2 \mathrm{~A} & \text { to } \\ >11 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 2.2 \mathrm{~mA} \\ 22 \mathrm{~mA} \\ 220 \mathrm{~mA} \\ 2.2 \mathrm{~A} \\ 11 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$ | 40 Hz to 1 kHz | $\begin{aligned} & 0.15 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ & 0.15 \cdot 10^{-3} \cdot I+0.8 \mu \mathrm{~A} \\ & 0.37 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ & 0.75 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 0.44 \cdot 10^{-3} \cdot I+0.35 \mathrm{~mA} \\ & 0.31 \cdot 10^{-3} \cdot I+0.5 \mathrm{~mA} \end{aligned}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## On-site Calibration - Darmstadt

| Measurement quantity / Calibration item | Rang |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC active power Measurement instruments | 0.1 W to <br> 0.1 W to <br> 0.1 W to <br> 0.1 W to <br> 1 W to <br> 1 W to <br> 10 W to <br> 10 W to | $\begin{array}{r} 9.15 \mathrm{~W} \\ 33.5 \mathrm{~W} \\ 91.5 \mathrm{~W} \\ 336.5 \mathrm{~W} \\ 917 \mathrm{~W} \\ 2243 \mathrm{~W} \\ 4589 \mathrm{~W} \\ 20.9 \mathrm{~kW} \end{array}$ | $\begin{array}{rrr\|} \hline 3.3 \mathrm{~mA} & \text { to } & <9 \mathrm{~mA} \\ 9 \mathrm{~mA} & \text { to } & <33 \mathrm{~mA} \\ 33 \mathrm{~mA} & \text { to } & <90 \mathrm{~mA} \\ 90 \mathrm{~mA} & \text { to } & <0.33 \mathrm{~mA} \\ 0.33 \mathrm{~A} & \text { to } & <0.9 \mathrm{~A} \\ 0.9 \mathrm{~A} & \text { to } & <2.2 \mathrm{~A} \\ 2.2 \mathrm{~A} & \text { to } & <4.5 \mathrm{~A} \\ 4.5 \mathrm{~A} & \text { to } & 20.5 \mathrm{~A} \end{array}$ | $\begin{array}{r} 2 \cdot 10^{-3} \cdot P \\ 1.7 \cdot 10^{-3} \cdot P \\ 2 \cdot 10^{-3} \cdot P \\ 1.7 \cdot 10^{-3} \cdot P \\ 2 \cdot 10^{-3} \cdot P \\ 1.8 \cdot 10^{-3} \cdot P \\ 2 \cdot 10^{-3} \cdot P \\ 1.8 \cdot 10^{-3} \cdot P \end{array}$ | $P=$ measured value <br> Calibration with <br> Fluke 5520A <br> Frequency from <br> 45 Hz to 65 Hz <br> $\cos \varphi=1$ |
| Capacitance Measurement instruments | 0.19 nF to <br> 0.4 nF to <br> 1.1 nF to <br> 3.3 nF to <br> 11 nF to <br> 33 nF to <br> 110 nF to <br> $0.33 \mu \mathrm{~F}$ to <br> $1.1 \mu \mathrm{~F}$ to <br> $3.3 \mu \mathrm{~F}$ to | $\begin{array}{r} 0.39 \mathrm{nF} \\ 1.09 \mathrm{nF} \\ 3.29 \mathrm{nF} \\ 10.9 \mathrm{nF} \\ 32.9 \mathrm{nF} \\ 109.9 \mathrm{nF} \\ 329 \mathrm{nF} \\ 1.09 \mu \mathrm{~F} \\ 3.29 \mu \mathrm{~F} \\ 10.99 \mu \mathrm{~F} \end{array}$ | 10 Hz to 10 kHz <br> 10 Hz to 10 kHz <br> 10 Hz to 3 kHz <br> 10 Hz to 1 kHz <br> 10 Hz to 600 Hz <br> 10 Hz to 300 Hz <br> 10 Hz to 150 Hz | $\begin{array}{r} 40 \cdot 10^{-3} \cdot C \\ 18 \cdot 10^{-3} \cdot C \\ 12 \cdot 10^{-3} \cdot C \\ 5 \cdot 10^{-3} \cdot C \end{array}$ | $C=$ measured value <br> with Calibrator <br> Fluke 5520A |
| DC voltage Square wave generators | $\begin{aligned} 0 \mathrm{~V} & \text { to } \\ 0.12 \mathrm{~V} & \text { to } \\ 1.2 \mathrm{~V} & \text { to } \\ >12 \mathrm{~V} & \text { to } \\ >120 \mathrm{~V} & \text { to } \end{aligned}$ | $\begin{array}{r} <0.12 \mathrm{~V} \\ <1.2 \mathrm{~V} \\ 12 \mathrm{~V} \\ 120 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$ | DC | $\begin{aligned} & 25 \cdot 10^{-6} \cdot U+5 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+5 \mu \mathrm{~V} \\ & 10 \cdot 10^{-6} \cdot U+5 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+70 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+0.20 \mathrm{mV} \end{aligned}$ | $U=$ measured value <br> Determination with DMM <br> HP 3458 |
| Square wave voltage <br> Square wave generators | 0 V to <br> 0.12 V to <br> 1.2 V to <br> $>12 \mathrm{~V}$ to <br> $>120 \mathrm{~V}$ to <br> 0 V to <br> 0.12 V to <br> 1.2 V to <br> $>12 \mathrm{~V}$ to | $\begin{array}{r} \hline<0.12 \mathrm{~V} \\ <1.2 \mathrm{~V} \\ 12 \mathrm{~V} \\ 120 \mathrm{~V} \\ 1000 \mathrm{~V} \\ \hline<0.12 \mathrm{~V} \\ <1.2 \mathrm{~V} \\ 12 \mathrm{~V} \\ 120 \mathrm{~V} \end{array}$ | $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & 0.3 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & \hline 0.7 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+0.9 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+9 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+90 \mathrm{mV} \end{aligned}$ | Determination with Sample-DMM; HP 3458 |
| Impulse amplitude Impulse generators | 5 mV to | 50 V | $50 \Omega$ | $85 \cdot 10^{-3} \cdot U$ | Determination with oscilloscope <br> $t_{\mathrm{r}}, t_{\mathrm{H}}>10 \cdot t_{\mathrm{r}}$ System <br> $t_{\mathrm{r}}=$ impulse rise time, <br> $t_{\mathrm{H}}=$ pulse half-power bandwith <br> $t_{\mathrm{r}}$, System $=$ rise time of measurement system |
| Rise time Impulse generators | 825 ps to | 100 ms |  | $60 \cdot 10^{-3} \cdot t_{\mathrm{r}}+U_{\mathrm{Tf}}$ | The system rise time $t_{\mathrm{r}}$ has to be considered when determining $t_{\mathrm{r}}$ by oscilloscope |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Darmstadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Time of oscillation Impulse generators | 1 ns to 1 s |  | $3.5 \cdot 10^{-3} \cdot t+0.2 \mathrm{~ns}$ | Determination with oscilloscope |
|  | 0.33 ns to 1 s |  | $1 \cdot 10^{-10} \cdot t+U_{\text {Tf }}$ | Determination via <br> 1/frequency <br> $U_{\mathrm{Tf}}$ : trigger uncertainty |
| Vertical deflection | 6 mV to 200 V | $1 \mathrm{M} \Omega(1 \mathrm{kHz})$ | $5 \cdot 10^{-3} \cdot U$ | The uncertainty refers to generation of calibration signals incl. a reading error of 0.1 \% for DSOs with self-recording raster |
|  | 6 mV to 3 V | $50 \Omega(1 \mathrm{kHz})$ | $5 \cdot 10^{-3} \cdot U$ |  |
|  | 6 mV to 200 V | $1 \mathrm{M} \Omega(1 \mathrm{kHz})$ | $6 \cdot 10^{-3} \cdot U$ | The uncertainty refers to generation of calibration signals incl. a reading error of $0.3 \%$ for picture tubes with fixed raster |
|  | 6 mV to 3 V | $50 \Omega(1 \mathrm{kHz})$ | $6 \cdot 10^{-3} \cdot U$ |  |
| Horizontal deflection | $10 \mathrm{~ns} ; 80 \mathrm{~ns} ; 160 \mathrm{~ns}$ 400 ns to 5 s |  | $4 \cdot 10^{-3} \cdot t$ | Reading error of 0.3 \% for picture tubes with fixed raster |
|  | $10 \mathrm{~ns} ; 80 \mathrm{~ns} ; 160 \mathrm{~ns}$ 400 ns to 5 s |  | $2.5 \cdot 10^{-3} \cdot t$ | Reading error of 0.1 \% for DSOs with self-recording raster |
| Band width | 100 kHz to 1 GHz | 0.1 V to 1 V | $40 \cdot 10^{-3} \cdot b$ | $b=$ measured value <br> Determination of 3-dBpoint with power splitter and HF-voltage measurement |
|  | $>1 \mathrm{GHz}$ to 3 GHz | 0.1 V to 1 V | $60 \cdot 10^{-3} \cdot b$ |  |
| Rise time | 360 ps to 10 ns | $\begin{gathered} \text { Range of voltage } \\ 20 \mathrm{mV} \text { to } 1 \mathrm{~V} \\ R_{\mathrm{i}}=50 \Omega \end{gathered}$ | 15 ps | $t_{\mathrm{r}}=$ rise time repetition rate 10 Hz to 1 MHz with Tektronix-Pulse head |
| Time and Frequency Frequency | $\begin{aligned} & 1 \mathrm{~Hz} \text { to } 3 \mathrm{GHz} \\ & \hline 3 \mathrm{GHz} \text { to } 26.5 \mathrm{GHz} \end{aligned}$ | Digital frequencymeasurement on count basis | $2 \cdot \sqrt{\left(10^{-10} \cdot f\right)^{2}+U_{\mathrm{Tf}}^{2}}$ <br> $2 \cdot \sqrt{\left(10^{-10} \cdot f\right)^{2}+(1 \mathrm{~Hz})^{2} / 3}$ | $\begin{aligned} & f=\text { frequency } \\ & U_{\mathrm{Tf}}: \text { trigger uncertainty } \end{aligned}$ |
| Time interval | 10 ms to 10 s |  | $2 \cdot \sqrt{\left(10^{-10} \cdot t\right)^{2}+(1 \mathrm{~ns})^{2} / 3+U_{\mathrm{Tf}}^{2}}$ | $\begin{aligned} & t=\text { time interval } \\ & U_{\mathrm{Tt}} \text { : trigger uncertainty } \end{aligned}$ |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Neustadt

Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Length <br> Gauge blocks * made of steel according to DIN EN ISO 3650:1999 | 0.5 mm to | 100 mm | VDI/VDE/DGQ 2618 <br> Part 3.1:2004 <br> Measurement of the deviation of the central length $l_{\mathrm{c}}$ from the nominal value $l_{\mathrm{n}}$ by comparison measurement Measurement of the deviations $f_{\mathrm{o}}$ and $f_{\mathrm{u}}$ from the central length by 5 points comparison measurement | For the central length: $0.08 \mu \mathrm{~m}+0.8 \cdot 10^{-6} \cdot l$ <br> For the deviations $f_{\mathrm{o}}$ and $f_{\mathrm{u}}$ from the central length: $0.07 \mu \mathrm{~m}$ | in the nominal values of references <br> $l=$ gauge block length <br> Measuring surface quality as stated in QMH rsp. in the test specifications <br> For the smallest measurement uncertainties, the wringability and the wringing characteristics of both measuring surfaces must be checked using an appropriate optical flat |
| Gauge blocks * made of ceramics according to DIN EN ISO 3650:1999 | 0.5 mm to | 100 mm |  | For the central length: $0.1 \mu \mathrm{~m}+0.9 \cdot 10^{-6} \cdot l$ <br> For the deviations $f_{\mathrm{o}}$ and $f_{\mathrm{u}}$ from the central length: $0.07 \mu \mathrm{~m}$ |  |
| Cylindrical setting gauges * <br> Ring gauges <br> Diameter | 3 mm to | 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.1:2006 } \end{aligned}$ | $0.8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter of the ring |
| Roundness deviation | 3 mm to | 200 mm |  | $0.1 \mu \mathrm{~m}$ |  |
| Straightness and parallelism deviation | 5 mm to | 300 mm |  | $1 \mu \mathrm{~m}$ | Length of profile line |
| Setting plug gauges Diameter | 1 mm to | 200 mm |  | $0.8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter of the plug |
| Roundness deviation | 1 mm to | 200 mm |  | $0.1 \mu \mathrm{~m}$ |  |
| Straightness and parallelism deviation | 5 mm to | 500 mm |  | $1 \mu \mathrm{~m}$ | Length of profile line |
| Testing cylinder Roundness deviation | 60 mm to | 200 mm | Trescal KA27 01.1/2021 | $0.1 \mu \mathrm{~m}$ | Diameter |
| Straightness and parallelism deviation | 5 mm to 300 mm |  |  | $1 \mu \mathrm{~m}$ | Length of profile line |
| Angular deviation between front surface and surface line |  |  | $1 \mu \mathrm{~m}$ |  |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Cylindrical plug gauge with taper | axial lengthto 400 mm | Trescal KA32 01.1/2021 |  |  |
| Cylinder |  |  |  |  |
| Diameter |  |  | $0.6 \mu \mathrm{~m}$ |  |
| Form error |  |  | $0.5 \mu \mathrm{~m}$ |  |
| Taper | Diameterto 50 mm |  |  |  |
| Form error |  |  | $0.5 \mu \mathrm{~m}$ |  |
| Taper angle |  |  | 0.8" |  |
| Coaxiality deviation |  |  | $1.8 \mu \mathrm{~m}$ |  |
| Balls Diameter | 5 mm to 50 mm | Trescal KA67 01.1/2021 | $1 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ diameter of balls 2-point-diameter via mechanical probing |
| Roundness deviation |  |  | $0.1 \mu \mathrm{~m}$ |  |
| Gap gauges * | 10 mm to 160 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.7:2005 } \end{aligned}$ | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Feeler gauges | 0.01 mm to 2 mm | Trescal KA29 01.1/2021 | $1 \mu \mathrm{~m}$ |  |
| Limit gauges <br> Distance at measuring points of plan-parallel areas | 1 mm to 300 mm | Trescal KA66 01.1/2021 | $1 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l$ | $l=$ distance between measuring surfaces distance by 2-PointMeasurement |
| Polygon plug gauges with plan-parallel measuring surfaces | 1 mm to 100 mm | Trescal KA66 01.1/2021 | $1 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l$ |  |
| Thread gauges * Pitch diameter on external thread | 1 mm to 200 mm Lead $\geq 0.25 \mathrm{~mm}$ | VDI/VDE/DGQ 2618 <br> Part 4.8:2006, Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter <br> Simple pitch diameter |
| Pitch diameter on internal thread | $\begin{gathered} 3 \mathrm{~mm} \text { to } 200 \mathrm{~mm} \\ \text { Lead } \\ \geq 0.50 \mathrm{~mm} \text { to } 6 \mathrm{~mm} \\ \hline \end{gathered}$ | VDI/VDE/DGQ 2618 <br> Part 4.9:2006, Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ |  |
| Knife straight edges * Straightness deviation | to 1000 mm | $\text { VDI/VDE/DGQ } 2618$ Part 5.2:2013 | $1 \mu \mathrm{~m}+2.8 \cdot 10^{-6} \cdot l$ | $l=$ test edge length |
| Steal squares $90^{\circ}$ (Flat and try aquare) * Squarness deviation | to 800 mm | VDI/VDE/DGQ/DKD 2618 Part 7.1:2019 | $1 \mu \mathrm{~m}+2.8 \cdot 10^{-6} \cdot l_{\mathrm{z}}$ | $l_{\mathrm{z}}=$ leg length |
| Protractors <br> Angle deviation | $0^{\circ}$ to $360^{\circ}$ | Trescal KA28 01.1/2021 | 30" | graduation of the scale $=1^{\prime}$ |
|  |  |  | 2' | graduation of the scale $\text { = } 5^{\prime}$ |
| Straightness deviation | to 300 mm |  | $1 \mu \mathrm{~m}$ |  |
| Parallelism deviation |  |  | $1.5 \mu \mathrm{~m}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Annex to the Partial Accreditation Certificate D-K-15015-01-01

## Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Calipers for external, internal and depth dimensions * | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 9.1:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
|  | $>300 \mathrm{~mm}$ to 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Depth calipers* | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 9.2:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
|  | $>300 \mathrm{~mm}$ to 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Height calipers* | 0 mm to 1000 mm | VDI/VDE/DGQ 2618 <br> Part 9.3:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Calipers with prismatic measuring surfaces | 1 mm to 105 mm | Trescal KA16-3 01.1/2021 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Micrometers* | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length $300 \mathrm{~mm}=$ final value of the measuring range |
|  | $>300 \mathrm{~mm}$ to 500 mm |  | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $500 \mathrm{~mm}=$ final value of the measuring range |
| Reference gauges for micrometers * | 25 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 4.4:2009 | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Micrometers with prismatic measuring surfaces form D10 | 1 mm to 105 mm | Trescal KA16-8 01.1/2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter $105 \mathrm{~mm}=$ final value of the measuring range |
| Micrometers for screw thread measurement form D18 * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.2:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Micrometers with dial indicator form D13 * | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 10.3:2002 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Micrometer heads * | 0 mm to 50 mm | VDI/VDE/DGQ 2618 <br> Part 10.4:2008 | $3 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l$ | final value of the measuring range |
| Depth micrometers with extensions * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.5:2010 } \end{aligned}$ | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | final value of the measuring range; Measuring element generally 25 mm rang $\epsilon$ |
| Internal micrometers with jaws | 5 mm to 200 mm | Trescal KA16-6 01.1/2021 | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | final value of the measuring range |
| Internal transverse groove micrometers | 0 mm to 100 mm | Trescal KA16-7 01.1/2021 | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | final value of the measuring range |
| Internal micrometers with two-point contact * | 25 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Internal micrometers with three-point contact * | 3 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.8:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Dial gauges with analogue display * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | measured in vertical position |
| Dial indicators * | to $\quad 3 \mathrm{~mm}$ | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.2:2002 } \end{aligned}$ | $0.7 \mu \mathrm{~m}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Lever gauges * | to 1.6 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.3:2002 } \end{aligned}$ | $0.9 \mu \mathrm{~m}$ |  |
| Dial gauges with digital display * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | measured in vertical position |
| Lever gauges (quicktests) for external measurements | 0 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 12.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Lever gauges (quicktests) for internal measurements | 2.5 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 13.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Thickness gauges | 0 mm to 200 mm | Trescal KA70 01.1/2021 | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| DC and Low frequency <br> DC voltage <br> Measurement instruments | 0 mV to 220 mV <br> $>0.22 \mathrm{~V}$ to 2.2 V <br> $>2.2 \mathrm{~V}$ to 11 V <br> $>11 \mathrm{~V}$ to 22 V <br> $>22 \mathrm{~V}$ to 220 V <br> $>220 \mathrm{~V}$ to 1000 V |  | $\begin{aligned} & 9 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 6 \cdot 10^{-6} \cdot U+1 \mu \mathrm{~V} \\ & 4 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 4 \cdot 10^{-6} \cdot U+5 \mu \mathrm{~V} \\ & 6 \cdot 10^{-6} \cdot U+47 \mu \mathrm{~V} \\ & 8 \cdot 10^{-6} \cdot U+0.5 \mathrm{mV} \end{aligned}$ | $U$ = measured value |
| DC voltage Calibrators | 1 mV to 100 mV <br> $>0.1 \mathrm{~V}$ to 1 V <br> $>1 \mathrm{~V}$ to 10 V  <br> $>10 \mathrm{~V}$ to 100 V  <br> $>100 \mathrm{~V}$ to 1000 V  |  | $\begin{gathered} 12 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ 9 \cdot 10^{-6} \cdot U+0.7 \mu \mathrm{~V} \\ 9 \cdot 10^{-6} \cdot U+0.8 \mu \mathrm{~V} \\ 12 \cdot 10^{-6} \cdot U+35 \mu \mathrm{~V} \\ 11 \cdot 10^{-6} \cdot U+0.6 \mathrm{mV} \end{gathered}$ |  |
| DC power Measurement instruments | $20 \mu \mathrm{~A}$ to $220 \mu \mathrm{~A}$ <br> $>0.22 \mathrm{~mA}$ to 2.2 mA <br> $>2.2 \mathrm{~mA}$ to 22 mA <br> $>22 \mathrm{~mA}$ to 220 mA <br> $>0.22 \mathrm{~A}$ to 2.1 A |  | $\begin{aligned} & 36 \cdot 10^{-6} \cdot I+10 \mathrm{nA} \\ & 39 \cdot 10^{-6} \cdot I+10 \mathrm{nA} \\ & 41 \cdot 10^{-6} \cdot I+50 \mathrm{nA} \\ & 52 \cdot 10^{-6} \cdot I+0.8 \mu \mathrm{~A} \\ & 93 \cdot 10^{-6} \cdot I+14 \mu \mathrm{~A} \end{aligned}$ | $I=$ measured value |
| DC power Calibrators | $1 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$ <br> $>10 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ <br> $>0.1 \mathrm{~mA}$ to 1 mA <br> $>1 \mathrm{~mA}$ to 10 mA <br> $>10 \mathrm{~mA}$ to 100 mA <br> $>0.1 \mathrm{~A}$ to 1 A |  | $1 \cdot 10^{-6} \cdot I+10 \mathrm{nA}$ $5 \cdot 10^{-6} \cdot I+10 \mathrm{nA}$ $19 \cdot 10^{-6} \cdot I+10 \mathrm{nA}$ $22 \cdot 10^{-6} \cdot I+80 \mathrm{nA}$ $39 \cdot 10^{-6} \cdot I+0.8 \mu \mathrm{~A}$ $0.13 \cdot 10^{-3} \cdot I+13 \mu \mathrm{~A}$ |  |
| AC voltage Measurement instruments | $220 \mu \mathrm{~V}$ to 2.2 mV |  10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.2 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.5 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \end{aligned}$ | $U$ = measured value |
|  | $>2.2 \mathrm{mV}$ to 22 mV |  10 Hz to <br> $>$ 20 Hz to <br> $>$ 20 kHz to <br> $>50 \mathrm{kHz}$   <br> $>$ 50 kHz  <br> to 100 kHz  | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.2 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.6 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>22 \mathrm{mV}$ to 220 mV | 10 Hz to 20 Hz  <br> $>20 \mathrm{~Hz}$ to 20 kHz <br> $>$ 20 kHz to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+14 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ & 0.2 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ & 0.5 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \end{aligned}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

Annex to the Partial Accreditation Certificate D-K-15015-01-01

## Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure |  | Expanded measurement of uncertainty | Remarks |
| AC voltage Measurement instruments | $>0.22 \mathrm{~V}$ to 2.2 V | $\begin{aligned} & 10 \mathrm{~Hz} \end{aligned} \text { to } 0 \text { o }$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+46 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+17 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+9 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+12 \mu \mathrm{~V} \\ & 0.2 \cdot 10^{-3} \cdot U+35 \mu \mathrm{~V} \end{aligned}$ | $U=$ measured value |
|  | $>2.2 \mathrm{~V}$ to 22 V | $\begin{aligned} & 10 \mathrm{~Hz} \end{aligned} \text { to }$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+0.5 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+58 \mathrm{\mu V} \\ & 0.1 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \end{aligned}$ |  |
|  | $>22 \mathrm{~V}$ to 220 V | $\begin{aligned} & 10 \mathrm{~Hz} \\ > & \text { to } \\ > & 20 \mathrm{~Hz} \end{aligned} \text { to }$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+4.6 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+1.7 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+0.7 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV} \\ & 0.2 \cdot 10^{-3} \cdot U+2.9 \mathrm{mV} \end{aligned}$ |  |
|  | $>220 \mathrm{~V}$ to 1100 V | 50 Hz to | 1 kHz | $0.1 \cdot 10^{-3} \cdot U+4.1 \mathrm{mV}$ |  |
| AC voltage Calibrators | 1 mV to 10 mV | $\begin{aligned} & 10 \mathrm{~Hz} \end{aligned} \text { to } 0 \text { a }$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.2 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 0.9 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 5.5 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>10 \mathrm{mV}$ to 100 mV | $\begin{aligned} & 10 \mathrm{~Hz} \end{aligned} \text { to } 0 \text { a }$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.1 \cdot 10^{-3} \cdot U+7 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 0.7 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 0.7 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \\ & 1.1 \cdot 10^{-3} \cdot U+5 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>0.1 \mathrm{~V}$ to 10 V | $\begin{array}{r} 10 \mathrm{~Hz} \text { to } \\ >40 \mathrm{~Hz} \text { to } \\ >1 \mathrm{kHz} \text { to } \\ >20 \mathrm{kHz} \text { to } \\ >50 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.1 \cdot 10^{-3} \cdot U+0.5 \mathrm{mV} \\ & 0.1 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & 0.2 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & 0.4 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ & 0.9 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \end{aligned}$ |  |
|  | $>10 \mathrm{~V}$ to 100 V | $\begin{aligned} & 10 \mathrm{~Hz} \end{aligned} \text { to }$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+4.7 \mathrm{mV} \\ & 0.3 \cdot 10^{-3} \cdot U+2.4 \mathrm{mV} \\ & 0.4 \cdot 10^{-3} \cdot U+2.4 \mathrm{mV} \\ & 1.4 \cdot 10^{-3} \cdot U+2.4 \mathrm{mV} \end{aligned}$ |  |
|  | $>100 \mathrm{~V}$ to 1000 V | $\begin{aligned} 10 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ > & 1 \mathrm{kHz} \end{aligned} \text { to }$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.5 \cdot 10^{-3} \cdot U+47 \mathrm{mV} \\ & 0.5 \cdot 10^{-3} \cdot U+24 \mathrm{mV} \\ & 0.7 \cdot 10^{-3} \cdot U+24 \mathrm{mV} \\ & 1.4 \cdot 10^{-3} \cdot U+24 \mathrm{mV} \\ & 3.5 \cdot 10^{-3} \cdot U+24 \mathrm{mV} \end{aligned}$ |  |
| AC current Measurement instruments | $22 \mu \mathrm{~A}$ to $220 \mu \mathrm{~A}$ | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ > & 20 \mathrm{~Hz} \text { to } \\ > & 40 \mathrm{~Hz} \text { to } \\ > & 1 \mathrm{kHz} \text { to } \\ > & 5 \mathrm{kHz} \text { to } \end{aligned}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 5 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot I+30 \mathrm{nA} \\ & 0.2 \cdot 10^{-3} \cdot I+20 \mathrm{nA} \\ & 0.2 \cdot 10^{-3} \cdot I+20 \mathrm{nA} \\ & 0.4 \cdot 10^{-3} \cdot I+20 \mathrm{nA} \\ & 1.3 \cdot 10^{-3} \cdot I+80 \mathrm{nA} \end{aligned}$ | $I=$ measured value |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| AC current Measurement instruments | $>0.22 \mathrm{~mA}$ to 2.2 mA |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>$ 40 Hz to 1 kHz <br> $>$ 1 kHz to 5 kHz <br> $>$ 5 kHz to 10 kHz | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~A} \\ & 1.3 \cdot 10^{-3} \cdot I+0.8 \mu \mathrm{~A} \end{aligned}$ | $I=$ measured value |
|  | $>2.2 \mathrm{~mA}$ to 22 mA |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>$ 40 Hz to 1 kHz <br> $>$ 1 kHz to 5 kHz <br> $>$ 5 kHz to 10 kHz | $\begin{aligned} & 0.4 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+0.4 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+0.4 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ & 1.3 \cdot 10^{-3} \cdot I+5.8 \mu \mathrm{~A} \end{aligned}$ |  |
|  | $>22 \mathrm{~mA}$ to 220 mA |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>$ 40 Hz to 1 kHz <br> $>$ 1 kHz to 5 kHz <br> $>$ 5 kHz to 10 kHz | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot I+4.6 \mu \mathrm{~A} \\ & 0.3 \cdot 10^{-3} \cdot I+4.1 \mu \mathrm{~A} \\ & 0.3 \cdot 10^{-3} \cdot I+2.9 \mu \mathrm{~A} \\ & 0.3 \cdot 10^{-3} \cdot I+4.1 \mu \mathrm{~A} \\ & 1.3 \cdot 10^{-3} \cdot I+12 \mu \mathrm{~A} \end{aligned}$ |  |
|  | $>0.22 \mathrm{~A}$ to 2.2 A |  20 Hz to 1 kHz <br> $>$ 1 kHz to 5 kHz <br> $>$ 5 kHz to 10 kHz | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot I+41 \mu \mathrm{~A} \\ & 0.5 \cdot 10^{-3} \cdot I+93 \mu \mathrm{~A} \\ & 8.1 \cdot 10^{-3} \cdot I+19 \mu \mathrm{~A} \end{aligned}$ |  |
| AC current Calibrators | $10 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ |  10 Hz to 20 Hz <br> $>$ 20 Hz to 45 Hz <br> $>$ 45 Hz to 1 kHz | $\begin{aligned} & 4.6 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~A} \\ & 1.7 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.7 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~A} \end{aligned}$ |  |
|  | $>0.1 \mathrm{~mA}$ to 100 mA | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 45 Hz <br> $>45 \mathrm{~Hz}$ to 100 Hz <br> $>100 \mathrm{~Hz}$ to 5 kHz | $\begin{aligned} & 4.6 \cdot 10^{-3} \cdot I+23 \mu \mathrm{~A} \\ & 1.7 \cdot 10^{-3} \cdot I+23 \mu \mathrm{~A} \\ & 0.7 \cdot 10^{-3} \cdot I+23 \mu \mathrm{~A} \\ & 1.7 \cdot 10^{-3} \cdot I+23 \mu \mathrm{~A} \end{aligned}$ |  |
|  | $>0.1 \mathrm{~A}$ to 1 A | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 45 Hz <br> $>45 \mathrm{~Hz}$ to 100 Hz <br> $>100 \mathrm{~Hz}$ to 5 kHz | $\begin{aligned} & 4.6 \cdot 10^{-3} \cdot I+0.2 \mathrm{~mA} \\ & 1.9 \cdot 10^{-3} \cdot I+0.2 \mathrm{~mA} \\ & 0.9 \cdot 10^{-3} \cdot I+0.2 \mathrm{~mA} \\ & 1.2 \cdot 10^{-3} \cdot I+0.2 \mathrm{~mA} \end{aligned}$ |  |
| DC resistance Measurement instruments | $1 \Omega ; 1.9 \Omega$ $10 \Omega ; 19 \Omega$ $100 \Omega ; 190 \Omega$ $1 \mathrm{k} \Omega ; 1.9 \mathrm{k} \Omega$ $10 \mathrm{k} \Omega ; 19 \mathrm{k} \Omega$ $100 \mathrm{k} \Omega ; 190 \mathrm{k} \Omega$ $1 \mathrm{M} \Omega$ $1.9 \mathrm{M} \Omega$ $10 \mathrm{M} \Omega$ $19 \mathrm{M} \Omega$ $100 \mathrm{M} \Omega$ |  | $0.1 \cdot 10^{-3} \cdot R$ $27 \cdot 10^{-6} \cdot R$ $12 \cdot 10^{-6} \cdot R$ $10 \cdot 10^{-6} \cdot R$ $10 \cdot 10^{-6} \cdot R$ $14 \cdot 10^{-6} \cdot R$ $24 \cdot 10^{-6} \cdot R$ $26 \cdot 10^{-6} \cdot R$ $47 \cdot 10^{-6} \cdot R$ $58 \cdot 10^{-6} \cdot R$ $0.1 \cdot 10^{-3} \cdot R$ | $R=$ measured value |
| DC resistance Resistors | $>0 \Omega$ to $10 \Omega$ <br> $>10 \Omega$ to $100 \Omega$ <br> $>0.1 \mathrm{k} \Omega$ to $1 \mathrm{k} \Omega$ <br> $>1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ <br> $>10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ <br> $>0.1 \mathrm{M} \Omega$ to $1 \mathrm{M} \Omega$ <br> $>1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$ <br> $>10 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$ |  | $\begin{aligned} & 17 \cdot 10^{-6} \cdot R+60 \mu \Omega \\ & 14 \cdot 10^{-6} \cdot R+0.6 \mathrm{~m} \Omega \\ & 12 \cdot 10^{-6} \cdot R+0.6 \mathrm{~m} \Omega \\ & 12 \cdot 10^{-6} \cdot R+6 \mathrm{~m} \Omega \\ & 12 \cdot 10^{-6} \cdot R+58 \mathrm{~m} \Omega \\ & 17 \cdot 10^{-6} \cdot R+2.3 \Omega \\ & 58 \cdot 10^{-6} \cdot R+0.1 \mathrm{k} \Omega \\ & 0.6 \cdot 10^{-3} \cdot R+1.1 \mathrm{k} \Omega \end{aligned}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## On-site Calibration - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Length <br> Calipers for external, internal and depth dimensions * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.1:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of the measuring range |
| Depth calipers* | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 9.2:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Micrometers * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Mechanical dial gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | measured in vertical position |
| Dial indicators * | to $\quad 3 \mathrm{~mm}$ | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.2:2002 } \end{aligned}$ | $0.7 \mu \mathrm{~m}$ |  |
| Lever gauges * | to 1.6 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.3:2002 } \end{aligned}$ | $0.9 \mu \mathrm{~m}$ |  |
| Dgital indicator gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | measured in vertical position |
| Horizontal length measuring devices | 0 mm to 300 mm | Trescal KA06-1 01.1/2021 | $0.2 \mu \mathrm{~m}+2.5 \cdot 10^{-6} \cdot l$ | $l=$ measured length <br> no calibration of additional axis (z-axis) |
|  | Measuring element with max. 300 mm range, scope up to 1000 mm |  |  |  |
| Vertical length measuring devices | 0 mm to 1000 mmto $30 \mu \mathrm{~m}$ | Trescal KA06-2 01.1/2021 | $1.7 \mu \mathrm{~m}+1.6 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Perpendicularity deviation |  |  | $2.5 \mu \mathrm{~m}+1.2 \cdot 10^{-6} \cdot l_{\mathrm{z}}$ | $l_{\mathrm{z}}=$ lead length up to 800 mm |
| Dial gauge testers | to 100 mm | Trescal KA02 01.1/2021 | $0.4 \mu \mathrm{~m}+2 \cdot 10^{-6} \cdot l$ | $l=$ measured length with incremental probe IKF 100 |
| Plane areas for example hard stone straigth edge Straightness deviation | to $50 \mu \mathrm{~m}$ | Trescal KA58 01.1/2021 to 10 m edge length | $1 \mu \mathrm{~m}+0.5 \cdot 10^{-6} \cdot l$ | $l=$ edge length of the standard |
| Horizontal flatness embodiment, for example surface plates according to DIN 876:1984 Flatness deviation | to $\quad 50 \mu \mathrm{~m}$ | Trescal KA58 01.1/2021 to 10 m edge length | $1 \mu \mathrm{~m}+0.5 \cdot 10^{-6} \cdot l$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Mobile Laboratory - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Length |  |  |  |  |  |
| Cylindrical setting gauges * <br> Ring gauges <br> Diameter | 10 mm to | 100 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { part 4.1:2006 } \\ & \text { option } 3 \text { and } 4 \end{aligned}$ | $1.0 \mu \mathrm{~m}+14 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter of ring |
| Setting plug gauges Diameter | 3 mm to | 100 mm |  | $1.0 \mu \mathrm{~m}+14 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter of plug |
| Calipers for external, internal and depth dimensions * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.1:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of the measuring range |
| Depth calipers* | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.2:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Micrometers * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Mechanical dial gauges * | to | 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | measured in vertical position |
| Dial indicators * | to | 3 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.2:2002 } \end{aligned}$ | $0.7 \mu \mathrm{~m}$ |  |
| Lever gauges* | to | 1.6 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.3:2002 } \end{aligned}$ | $0.9 \mu \mathrm{~m}$ |  |
| Digital indicator gauges * | to | 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | measured in vertical position |

Valid from: $\quad 10.01 .2024$
Date of issue: $\quad 10.01 .2024$
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Esslingen

Permanent Laboratory - Esslingen

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Length <br> Cylindrical setting gauges * <br> Plug gauges Diameter | 1 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 4.1:2006, <br> Option 3 and 4 | $0.8 \mu \mathrm{~m}+2 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Ring gauges Diameter | 10 mm to 200 mm | $\text { VDI/VDE/DGQ } 2618$ <br> Part 4.1:2006, Option 3 and 4 | $0.8 \mu \mathrm{~m}+2 \cdot 10^{-6} \cdot d$ |  |
| Measuring pins, pins for screw threads * Diameter | 1 mm to 20 mm | $\text { VDI/VDE/DGQ } 2618$ <br> Part 4.2:2007, Option 3 | $0.8 \mu \mathrm{~m}+2 \cdot 10^{-6} \cdot d$ |  |
| Thread gauges * Pitch diameter on external thread | 1 mm to 200 mm Lead 0.25 mm to 6 mm | VDI/VDE/DGQ 2618 <br> Part 4.8:2006, <br> Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter |
| Thread gauges * Pitch diameter on internal thread | ```.3 mm to 200 mm``` | VDI/VDE/DGQ 2618 <br> Part 4.9:2006, <br> Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | Simple pitch diameter |
| Calipers for external, | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 9.1:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| internal and depth dimensions* | > 300 mm to 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Depth calipers* | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.2:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
|  | $>300 \mathrm{~mm}$ to 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Height calipers* | 0 mm to 1000 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.3:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Micrometers * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=\text { final }$ <br> value of the measuring range |
| Internal micrometers with two-point contact * | 25 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Internal micrometers with three-point contact * | 3 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.8:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $\begin{aligned} & d=\text { measured } \\ & \text { diameter } \end{aligned}$ |
| Mechanical dial gauges* | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length Vertically |
| Digital indicator gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Dial indicators* | to 3 mm | VDI/VDE/DGQ 2618 <br> Part 11.2:2002 | $0.8 \mu \mathrm{~m}$ |  |
| Lever gauges * | to 1.6 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.3:2002 } \end{aligned}$ | $0.9 \mu \mathrm{~m}$ |  |

Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Esslingen

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Lever gauges for external measurements (quick tests) * | 0 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 12.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Lever gauges for internal measurements (quick tests) * | 3 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 13.1:2005 | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| DC and Low frequency Voltage ratio | $0 \mathrm{mV} / \mathrm{V}$ to $2 \mathrm{mV} / \mathrm{V}$ | DC voltage, $225 \mathrm{~Hz} ; 4800 \mathrm{~Hz}$ | $0.33 \cdot 10^{-3} \mathrm{mV} / \mathrm{V}$ |  |

## On-site Calibration - Esslingen

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / <br> Calibration item | Range | Measurement <br> conditions <br> Procedure | Expanded <br> measurement of <br> uncertainty | Remarks |  |
| DC and Low frequency <br> Voltage ratio | $0 \mathrm{mV} / \mathrm{V}$ to $2 \mathrm{mV} / \mathrm{V}$ | DC voltage, <br> $225 \mathrm{~Hz} ; 4800 \mathrm{~Hz}$ | $0.33 \cdot 10^{-3} \mathrm{mV} / \mathrm{V}$ |  |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Parchim

## Permanent Laboratory - Parchim

Calibration and Measurement Capabilities (CMC)


Valid from:
Date of issue: 10.01.2024

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Annex to the Partial Accreditation Certificate D-K-15015-01-01

Deutsche
Akkreditierungsstelle

## Permanent Laboratory - Parchim

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Depth calipers* | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 9.2:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Lever gauges for external measurements (quick tests) * | 0 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 12.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ Length of reference gauge |
| Lever gauges for internal measurements (quick tests) * | 2.5 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 13.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Micrometers * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length $300 \mathrm{~mm}=$ final value of the measuring range |
| Internal micrometers with two-point contact * | 25 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Internal micrometers with three-point contact * | 3 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.8:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter $300 \mathrm{~mm}=$ final value of the measuring range |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Berlin / Mahlow

Permanent Laboratory - Berlin / Mahlow

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Length |  |  |  |  |
| Gauge blocks * <br> made of steel according to DIN EN ISO 3650:1999 | 0.5 mm to 100 mm | VDI/VDE/DGQ 2618 <br> Part 3.1:2004 <br> in the nominal values of the references <br> Measurement of the deviation of the central length $l_{\mathrm{c}}$ from the nominal value $l_{n}$ by comparison measurement Measurement of the deviations $f_{0}$ and $f_{\mathrm{u}}$ from the central length by 5 points comparison measurement | For the central length: $0.08 \mu \mathrm{~m}+0.8 \cdot 10^{-6} \cdot l$ <br> For the deviations $f_{0}$ and $f_{\mathrm{u}}$ from the central length: $0.08 \mu \mathrm{~m}$ | $l=$ gauge block length <br> Measuring surface quality as stated in QMH rsp. in the test specifications <br> For the smallest measurement uncertainties, the wringability and the wringing characteristics of both measuring surfaces must be checked using an appropriate optical flat. |
| Cylindrical setting gauges * <br> Ring gauges <br> Diameter | 3 mm to 200 mm | VDI/VDE/DGQ 2618 | $0.8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Plug gauges Diameter | 3 mm to 200 mm | Part 4.1:2006 <br> Option 3 and 4 | $0.8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Thread gauges * Pitch diameter on external thread | 1 mm to 200 mm Lead 0.25 mm to 6 mm | VDI/VDE/DGQ 2618 <br> Part 4.8:2006, Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter <br> Simple pitch diameter |
| Pitch diameter on internal thread | ```3 3mm to 200 mm``` | VDI/VDE/DGQ 2618 <br> Part 4.9:2006, Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ |  |
| Reference gauges for micrometers * | 25 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.4:2009 } \end{aligned}$ | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Gap gauges * | 10 mm to 160 mm | VDI/VDE/DGQ 2618 <br> Part 4.7:2005 | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Mechanical dial gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | Vertically measured $l=$ measured length |
| Digital indicator gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 <br> Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Dial indicators * | to $\quad 3 \mathrm{~mm}$ | VDI/VDE/DGQ 2618 Part 11.2:2002 | $0.7 \mu \mathrm{~m}$ |  |
| Lever gauges * | to 1.6 mm | VDI/VDE/DGQ 2618 <br> Part 11.3:2002 | $0.9 \mu \mathrm{~m}$ |  |
| Calipers for external, internal and depth dimensions * | 0 mm to 300 mm <br> $>300 \mathrm{~mm}$ to 1000 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.1:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |

Valid from:
Date of issue:
10.01.2024

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

| Permanent Laboratory - Berlin / Mahlow |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Depth calipers * | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 9.2:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Height calipers* | 0 mm to 1000 mm | VDI/VDE/DGQ 2618 <br> Part 9.3:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Lever gauges for external measurements (quick tests) * | 0 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 12.1:2005 | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Lever gauges for internal measurements (quick tests) * | 2.5 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 13.1:2005 | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Micrometers* | 0 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 10.1:2001 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of the measuring range |
|  | > 300 mm to 500 mm |  | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $500 \mathrm{~mm}=$ final value of the measuring range |
| Internal micrometers with two-point contact * | 25 mm to 300 mm | VDI/VDE/DGQ 2618 <br> Part 10.7:2010 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of the measuring range |
| Internal micrometers with three-point contact * | 3 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 10.8:2002 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter $200 \mathrm{~mm}=$ final value of the measuring range |
| Straight edges * <br> Flatness and parallelism deviation | to 500 mm | VDI/VDE/DGQ 2618 <br> Part 5.1:2013 | $7 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l_{\text {z }}$ | $l_{z}=$ length of form embodiment |
| Steel squares * <br> Squareness deviation | to 500 mm | VDI/VDE/DGQ/DKD 2618 Part 7.1:2019 | $8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l_{\text {z }}$ | $l_{l}=$ leg length |
| Flatness deviation |  |  | $7 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l_{\text {z }}$ |  |

Valid from: $\quad 10.01 .2024$
Date of issue: $\quad 10.01 .2024$
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Donauwörth

## Permanent Laboratory - Donauwörth

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| DC and Low frequency <br> DC voltage <br> Measurement instruments | $\begin{array}{rrr}1 \mathrm{mV} & \text { to } & 0.22 \mathrm{~V} \\ >0.22 \mathrm{~V} & \text { to } & 2.2 \mathrm{~V} \\ >2.2 \mathrm{~V} & \text { to } & 22 \mathrm{~V} \\ >22 \mathrm{~V} & \text { to } & 220 \mathrm{~V} \\ >220 \mathrm{~V} & \text { to } & 1000 \mathrm{~V}\end{array}$ |  | $\begin{aligned} & 15 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+25 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+0.25 \mathrm{mV} \\ & 15 \cdot 10^{-6} \cdot U+2 \mathrm{mV} \end{aligned}$ | $U=$ measured value |
| DC voltage Sources | $\begin{array}{rrr}1 \mathrm{mV} & \text { to } & 1 \mathrm{~V} \\ >1 \mathrm{~V} & \text { to } & 10 \mathrm{~V} \\ >10 \mathrm{~V} & \text { to } & 100 \mathrm{~V} \\ >100 \mathrm{~V} & \text { to } & 1000 \mathrm{~V}\end{array}$ |  | $\begin{aligned} & 30 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 30 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 30 \cdot 10^{-6} \cdot U+50 \mu \mathrm{~V} \\ & 30 \cdot 10^{-6} \cdot U+1 \mathrm{mV} \end{aligned}$ |  |
| DC current Measurement instruments | $\begin{array}{rlr} 1 \mu \mathrm{~A} & \text { to } & 2.2 \mathrm{~mA} \\ >2.2 \mathrm{~mA} & \text { to } & 22 \mathrm{~mA} \\ >22 \mathrm{~mA} & \text { to } & 220 \mathrm{~mA} \\ >220 \mathrm{~mA} & \text { to } & 2.2 \mathrm{~A} \end{array}$ |  | $\begin{gathered} 80 \cdot 10^{-6} \cdot I+0.1 \mu \mathrm{~A} \\ 80 \cdot 10^{-6} \cdot I+0.3 \mu \mathrm{~A} \\ 90 \cdot 10^{-6} \cdot I+5 \mu \mathrm{~A} \\ 0.15 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \end{gathered}$ | $I=$ measured value |
| DC current Sources | $1 \mu \mathrm{~A}$ to 1.2 mA <br> $>1.2 \mathrm{~mA}$ to 12 mA <br> $>12 \mathrm{~mA}$ to 120 mA <br> $>120 \mathrm{~mA}$ to 1 A |  | $\begin{aligned} & 30 \cdot 10^{-6} \cdot I+0.1 \mu \mathrm{~A} \\ & 30 \cdot 10^{-6} \cdot I+0.3 \mu \mathrm{~A} \\ & 50 \cdot 10^{-6} \cdot I+5 \mu \mathrm{~A} \\ & 50 \cdot 10^{-6} \cdot I+0.15 \mathrm{~mA} \end{aligned}$ |  |
| DC resistance Measurement instruments | $\begin{gathered} 1 \Omega \\ 1.9 \Omega \\ 10 \Omega \\ 19 \Omega \\ 100 \Omega ; 190 \Omega ; 1 \mathrm{k} \Omega \\ 1.9 \mathrm{k} \Omega ; 10 \mathrm{k} \Omega ; 19 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega ; 190 \mathrm{k} \Omega ; 1 \mathrm{M} \Omega \\ 1.9 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 19 \mathrm{M} \Omega ; 100 \mathrm{M} \Omega \end{gathered}$ |  | $\begin{array}{r} \hline 0.2 \cdot 10^{-3} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 75 \cdot 10^{-6} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 0.2 \cdot 10^{-3} \cdot R \\ 0.1 \cdot 10^{-3} \cdot R \\ 0.7 \cdot 10^{-3} \cdot R \end{array}$ | $R=$ measured value |
| DC resistance Resistors | $1 \Omega$ to $12 \Omega$ <br> $>12 \Omega$ to $120 \Omega$  <br> $>120 \Omega$ to $1.2 \mathrm{k} \Omega$  <br> $>1.2 \mathrm{k} \Omega$ to $12 \mathrm{k} \Omega$  <br> $>12 \mathrm{k} \Omega$ to $120 \mathrm{k} \Omega$  <br> $>120 \mathrm{k} \Omega$ to $1.2 \mathrm{M} \Omega$  <br> $>1.2 \mathrm{M} \Omega$ to $12 \mathrm{M} \Omega$ <br> $>12 \mathrm{M} \Omega$ to $120 \mathrm{M} \Omega$ |  | $\begin{aligned} & 15 \cdot 10^{-6} \cdot R+0.3 \mathrm{~m} \Omega \\ & 15 \cdot 10^{-6} \cdot R+2.5 \mathrm{~m} \Omega \\ & 15 \cdot 10^{-6} \cdot R+15 \mathrm{~m} \Omega \\ & 15 \cdot 10^{-6} \cdot R+0.1 \Omega \\ & 15 \cdot 10^{-6} \cdot R+1.5 \Omega \\ & 15 \cdot 10^{-6} \cdot R+20 \Omega \\ & 30 \cdot 10^{-6} \cdot R+1 \mathrm{k} \Omega \\ & 0.3 \cdot 10^{-3} \cdot R+80 \mathrm{k} \Omega \end{aligned}$ |  |
| AC current Measurement instruments | $220 \mu \mathrm{~A}$ to 2.2 mA <br> $>2.2 \mathrm{~mA}$ to 22 mA <br> $>22 \mathrm{~mA}$ to 220 mA <br> $>220 \mathrm{~mA}$ to 2.2 A | 40 Hz to 1 kHz | $\begin{aligned} & 0.2 \cdot 10^{-3} \cdot I+0.5 \mu \mathrm{~A} \\ & 0.2 \cdot 10^{-3} \cdot I+1.5 \mu \mathrm{~A} \\ & 0.5 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ & 1.2 \cdot 10^{-3} \cdot I+0.22 \mathrm{~mA} \end{aligned}$ | $I=$ measured value |
| AC current Sources | $\begin{array}{rlr} 1 \mu \mathrm{~A} & \text { to } & 1.2 \mathrm{~mA} \\ >1.2 \mathrm{~mA} & \text { to } & 12 \mathrm{~mA} \\ >12 \mathrm{~mA} & \text { to } & 120 \mathrm{~mA} \\ >120 \mathrm{~mA} & \text { to } & 1 \mathrm{~A} \end{array}$ | 45 Hz to 1 kHz | $\begin{aligned} & 0.5 \cdot 10^{-3} \cdot I+0.5 \mu \mathrm{~A} \\ & 0.5 \cdot 10^{-3} \cdot I+5 \mu \mathrm{~A} \\ & 0.5 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ & 1 \cdot 10^{-3} \cdot I+0.5 \mathrm{~mA} \end{aligned}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Donauwörth

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure |  | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Measurement instruments | 0.1 V to 0.22 V | $\begin{array}{rr} 20 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \end{array}$ | $\begin{array}{r} 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 0.4 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 1.2 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \end{aligned}$ | $U=$ measured value |
|  | $>0.22 \mathrm{~V}$ to 2.2 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \\ >100 \mathrm{kHz} & \text { to } \\ >300 \mathrm{kHz} & \text { to } \\ >500 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \\ 300 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{array}$ | $\begin{gathered} \hline 0.25 \cdot 10^{-3} \cdot U+0.11 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+0.07 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.07 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ 0.6 \cdot 10^{-3} \cdot U+0.6 \mathrm{mV} \\ 1.2 \cdot 10^{-3} \cdot U+2 \mathrm{mV} \\ 3 \cdot 10^{-3} \cdot U+2.6 \mathrm{mV} \end{gathered}$ |  |
|  | $>2.2 \mathrm{~V}$ to 22 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \\ >100 \mathrm{kHz} & \text { to } \\ >300 \mathrm{kHz} & \text { to } \\ >500 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \\ 300 \mathrm{kHz} \\ 500 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{array}$ | $\begin{gathered} 0.25 \cdot 10^{-3} \cdot U+1.0 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+0.5 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 0.75 \cdot 10^{-3} \cdot U+6 \mathrm{mV} \\ 1.5 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \\ 4 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{gathered}$ |  |
|  | $>22 \mathrm{~V}$ to 220 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 0.1 \cdot 10^{-3} \cdot U+8 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+25 \mathrm{mV} \\ 1 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{array}$ |  |
|  | $>220 \mathrm{~V}$ to 1100 V | 50 Hz to | 1 kHz | $0.1 \cdot 10^{-3} \cdot U+0.25 \mathrm{~V}$ |  |
| AC voltage Sources | 0.1 V to 0.12 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.1 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 0.2 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 1 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \end{array}$ |  |
|  | $>0.12 \mathrm{~V}$ to 1.2 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \\ >100 \mathrm{kHz} & \text { to } \\ >300 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \\ 300 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{array}$ | $\begin{gathered} 0.1 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ 1 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV} \\ 3.5 \cdot 10^{-3} \cdot U+0.4 \mathrm{mV} \\ 12 \cdot 10^{-3} \cdot U+2 \mathrm{mV} \end{gathered}$ |  |
|  | $>1.2 \mathrm{~V}$ to 12 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \\ >100 \mathrm{kHz} & \text { to } \\ >300 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \\ 300 \mathrm{kHz} \\ 1 \mathrm{MHz} \end{array}$ | $\begin{gathered} 0.1 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 1 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 3.5 \cdot 10^{-3} \cdot U+4 \mathrm{mV} \\ 12 \cdot 10^{-3} \cdot U+15 \mathrm{mV} \end{gathered}$ |  |
|  | $>12 \mathrm{~V}$ to 120 V | $\begin{aligned} 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } \\ >20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot U+15 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 0.4 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 1.5 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{array}$ |  |
|  | $>120 \mathrm{~V}$ to 700 V | 40 Hz to | 1 kHz | $0.5 \cdot 10^{-3} \cdot U+0.2 \mathrm{~V}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Annex to the Partial Accreditation Certificate D-K-15015-01-01

## Halver

## Permanent Laboratory - Halver

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Length <br> Cylindrical setting gauges * <br> Ring gauges <br> Diameter | 3 mm to | 200 mm | VDI/VDE/DGQ 2618 <br> Part 4.1:2006 <br> Option 3 and 4 | $0.8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Plug gauges Diameter | 3 mm to | 200 mm |  | $0.8 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ |  |
| Measuring pins, pins for screw threads Diameter | 0.1 mm to | 20 mm | $\text { VDI/VDE/DGQ } 2618$ <br> Part 4.2:2007 <br> Option 3 | $1 \mu \mathrm{~m}+2 \cdot 10^{-6} \cdot d$ |  |
| Thread gauges * Pitch diameter on external thread | 1 mm to Lead 0.25 mm to | $200 \text { mm }$ $6 \mathrm{~mm}$ | VDI/VDE/DGQ 2618 <br> Part 4.8:2006 Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter Simple pitch diameter |
| Pitch diameter on internal thread | 3 mm to <br> Lead <br> 0.5 mm to | 200 mm <br> 6 mm | VDI/VDE/DGQ 2618 <br> Part 4.9:2006 Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ |  |
| Reference gauges for micrometers * | 25 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.4:2009 } \end{aligned}$ | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Gap gauges * | 10 mm to | 160 mm | VDI/VDE/DGQ 2618 <br> Part 4.7:2005 | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Calipers for external, internal and depth dimensions * | 0 mm to | 500 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.1:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Depth calipers* | 0 mm to | 500 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.2:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Height calipers * | 0 mm to | 500 mm | VDI/VDE/DGQ 2618 <br> Part 9.3:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Micrometers * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of measuring range |
| Micrometers with dial indicator form D 13 * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.3:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Depth micrometers with extensions * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.5:2010 } \end{aligned}$ | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | final value of the measuring range; Measuring element generally 25 mm range |
| Internal micrometers with two-point contact * | 25 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Internal micrometers with three-point contact * | 3 mm to | 150 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.8:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Halver

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Mechanical dial gauges* | to | 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Digital indicator gauges* | to | 100 mm | VDI/VDE/DGQ/DKD 2618 <br> Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Dial indicators * | to | 3 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.2:2002 } \end{aligned}$ | $0.7 \mu \mathrm{~m}$ |  |
| Lever gauges * | to | 1.6 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.3:2002 } \end{aligned}$ | $0.9 \mu \mathrm{~m}$ |  |
| Lever gauges for external measurements (quick tests) * | 0 mm to | 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 12.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Lever gauges for internal measurements (quick tests) * | 2.5 mm to | 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 13.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| DC and Low frequency <br> DC voltage <br> Measurement instruments | $\begin{array}{r} 100 \mathrm{mV} \text { to } \\ 0.33 \mathrm{~V} \text { to } \\ 3.3 \mathrm{~V} \text { to } \\ 33 \mathrm{~V} \text { to } \\ 330 \mathrm{~V} \text { to } \end{array}$ | $\begin{array}{r} <0.33 \mathrm{~V} \\ <3.3 \mathrm{~V} \\ <33 \mathrm{~V} \\ <330 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$ |  | $24 \cdot 10^{-6} \cdot U+1.1 \mu \mathrm{~V}$ <br> $14 \cdot 10^{-6} \cdot U+2.2 \mu \mathrm{~V}$ <br> $16 \cdot 10^{-6} \cdot U+21 \mu \mathrm{~V}$ <br> $22 \cdot 10^{-6} \cdot U+0.16 \mathrm{mV}$ <br> $22 \cdot 10^{-6} \cdot U+1.6 \mathrm{mV}$ | $U=$ measured value |
| DC voltage Sources | $\begin{array}{r} 0.1 \mathrm{~V} \text { to } \\ 1 \mathrm{~V} \text { to } \\ 10 \mathrm{~V} \text { to } \\ 100 \mathrm{~V} \text { to } \end{array}$ | $\begin{array}{r} <1 \mathrm{~V} \\ <10 \mathrm{~V} \\ <100 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$ |  | $\begin{aligned} & 27 \cdot 10^{-6} \cdot U+0.3 \mu \mathrm{~V} \\ & 13 \cdot 10^{-6} \cdot U+0.2 \mu \mathrm{~V} \\ & 16 \cdot 10^{-6} \cdot U+0.4 \mu \mathrm{~V} \\ & 17 \cdot 10^{-6} \cdot U+0.8 \mu \mathrm{~V} \end{aligned}$ |  |
| DC current <br> Measurement instruments | $100 \mu \mathrm{~A}$ to $330 \mu \mathrm{~A}$ to 3.3 mA to 33 mA to 0.33 A to 1.1 A to 3 A to 11 A to | $\begin{array}{r} <330 \mu \mathrm{~A} \\ <3.3 \mathrm{~mA} \\ <33 \mathrm{~mA} \\ <0.33 \mathrm{~A} \\ <1.1 \mathrm{~A} \\ <3 \mathrm{~A} \\ <11 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$ |  | $\begin{gathered} 0.19 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+0.1 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+0.3 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+2.8 \mu \mathrm{~A} \\ 0.24 \cdot 10^{-3} \cdot I+44 \mu \mathrm{~A} \\ 0.44 \cdot 10^{-3} \cdot I+45 \mu \mathrm{~A} \\ 0.58 \cdot 10^{-3} \cdot I+0.57 \mathrm{~mA} \\ 1.2 \cdot 10^{-3} \cdot I+0.86 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| DC current Sources | 0.1 mA to 1 mA to 10 mA to 100 mA to | $\begin{array}{r} <1 \mathrm{~mA} \\ <10 \mathrm{~mA} \\ <100 \mathrm{~mA} \\ 1 \mathrm{~A} \end{array}$ |  | $\begin{array}{r} 58 \cdot 10^{-6} \cdot I+2.3 \mu \mathrm{~A} \\ 60 \cdot 10^{-6} \cdot I+2.3 \mu \mathrm{~A} \\ 0.12 \cdot 10^{-3} \cdot I+5.7 \mu \mathrm{~A} \\ 0.22 \cdot 10^{-3} \cdot I+9.9 \mu \mathrm{~A} \end{array}$ |  |

Valid from: $\quad 10.01 .2024$
Date of issue: $\quad 10.01 .2024$
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Halver



This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Halver

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure |  | Expanded measurement of uncertainty | Remarks |
| AC voltage Sources | 0.1 V to $<1 \mathrm{~V}$ <br> 1 V to $<10 \mathrm{~V}$ <br> 10 V to $<100 \mathrm{~V}$ <br> 100 V to 1000 V | 45 Hz to | 1 kHz | $\begin{aligned} & 0.30 \cdot 10^{-3} \cdot U+79 \mathrm{mV} \\ & 0.25 \cdot 10^{-3} \cdot U+53 \mathrm{mV} \\ & 0.26 \cdot 10^{-3} \cdot U+54 \mathrm{mV} \\ & 0.30 \cdot 10^{-3} \cdot U+99 \mathrm{mV} \end{aligned}$ | $U=$ measured value |
| AC current <br> Measurement instruments | $100 \mu \mathrm{~A}$ to $<330 \mu \mathrm{~A}$ | 10 Hz to <br> 20 Hz to <br> 45 Hz to <br> 1 kHz to <br> 5 kHz to | $\begin{aligned} & <20 \mathrm{~Hz} \\ & <45 \mathrm{~Hz} \\ & <1 \mathrm{kHz} \\ & <5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 0.23 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.17 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.14 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.34 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.92 \cdot 10^{-2} \cdot I+0.3 \mu \mathrm{~A} \end{aligned}$ | $I=$ measured value |
|  | 0.33 mA to $<3.3 \mathrm{~mA}$ | 10 Hz to <br> 20 Hz to <br> 45 Hz to <br> 1 kHz to <br> 5 kHz to | $\begin{array}{r} <20 \mathrm{~Hz} \\ <45 \mathrm{~Hz} \\ <1 \mathrm{kHz} \\ <5 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.23 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.14 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.11 \cdot 10^{-2} \cdot I+0.2 \mu \mathrm{~A} \\ & 0.23 \cdot 10^{-2} \cdot I+0.3 \mu \mathrm{~A} \\ & 0.57 \cdot 10^{-2} \cdot I+0.4 \mu \mathrm{~A} \end{aligned}$ |  |
|  | 3.3 mA to $<33 \mathrm{~mA}$ | 10 Hz to <br> 20 Hz to <br> 45 Hz to <br> 1 kHz to <br> 5 kHz to | $\begin{aligned} & <20 \mathrm{~Hz} \\ & <45 \mathrm{~Hz} \\ & <1 \mathrm{kHz} \\ & <5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 0.20 \cdot 10^{-2} \cdot I+2.3 \mu \mathrm{~A} \\ & 0.10 \cdot 10^{-2} \cdot I+2.3 \mu \mathrm{~A} \\ & 0.46 \cdot 10^{-3} \cdot I+2.3 \mu \mathrm{~A} \\ & 0.92 \cdot 10^{-3} \cdot I+2.3 \mu \mathrm{~A} \\ & 0.23 \cdot 10^{-2} \cdot I+3.4 \mu \mathrm{~A} \end{aligned}$ |  |
|  | 33 mA to $<330 \mathrm{~mA}$ | 10 Hz to <br> 20 Hz to <br> 45 Hz to <br> 1 kHz to <br> 5 kHz to | $\begin{aligned} & <20 \mathrm{~Hz} \\ & <45 \mathrm{~Hz} \\ & <1 \mathrm{kHz} \\ & <5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 0.20 \cdot 10^{-2} \cdot I+23 \mu \mathrm{~A} \\ & 0.10 \cdot 10^{-2} \cdot I+23 \mu \mathrm{~A} \\ & 0.46 \cdot 10^{-3} \cdot I+23 \mu \mathrm{~A} \\ & 0.11 \cdot 10^{-2} \cdot I+57 \mu \mathrm{~A} \\ & 0.23 \cdot 10^{-2} \cdot I+0.11 \mathrm{~mA} \end{aligned}$ |  |
|  | 0.33 A to $<1.1 \mathrm{~A}$ | 10 Hz to <br> 45 Hz to <br> 1 kHz to <br> 5 kHz to | $\begin{aligned} & <45 \mathrm{~Hz} \\ & <1 \mathrm{kHz} \\ & <5 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$ | $\begin{gathered} 0.20 \cdot 10^{-2} \cdot I+0.11 \mathrm{~mA} \\ 0.58 \cdot 10^{-3} \cdot I+0.11 \mathrm{~mA} \\ 0.69 \cdot 10^{-2} \cdot I+1.1 \mathrm{~mA} \\ 2.8 \cdot 10^{-2} \cdot I+5.7 \mathrm{~mA} \end{gathered}$ |  |
|  | 1.1 A to $<11 \mathrm{~A}$ | $\begin{aligned} 45 \mathrm{~Hz} & \text { to } \\ 100 \mathrm{~Hz} & \text { to } \\ 1 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} <100 \mathrm{~Hz} \\ <1 \mathrm{kHz} \\ 5 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.69 \cdot 10^{-3} \cdot I+2.3 \mathrm{~mA} \\ & 0.12 \cdot 10^{-2} \cdot I+2.3 \mathrm{~mA} \\ & 0.34 \cdot 10^{-2} \cdot I+2.3 \mathrm{~mA} \end{aligned}$ |  |
|  | 11 A to 20 A | $\begin{aligned} 45 \mathrm{~Hz} & \text { to } \\ 100 \mathrm{~Hz} & \text { to } \\ 1 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} <100 \mathrm{~Hz} \\ <1 \mathrm{kHz} \\ 5 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.14 \cdot 10^{-2} \cdot I+5.7 \mathrm{~mA} \\ 0.17 \cdot 10^{-2} \cdot I+5.7 \mathrm{~mA} \\ 3.4 \cdot 10^{-2} \cdot I+5.7 \mathrm{~mA} \end{array}$ |  |
| AC current Sources | 0.1 mA to $<1 \mathrm{~mA}$ <br> 1 mA to $<10 \mathrm{~mA}$ <br> 10 mA to $<100 \mathrm{~mA}$ <br> 100 mA to 1 A | 45 Hz to | 1 kHz | $\begin{aligned} & 0.23 \cdot 10^{-3} \cdot I+0.11 \mathrm{~mA} \\ & 0.23 \cdot 10^{-3} \cdot I+0.11 \mathrm{~mA} \\ & 0.30 \cdot 10^{-3} \cdot I+0.11 \mathrm{~mA} \\ & 0.93 \cdot 10^{-3} \cdot I+0.2 \mathrm{~mA} \\ & \hline \end{aligned}$ |  |
| Time and Frequency <br> Frequency <br> Generators | 1 Hz to 225 MHz |  |  | $0.2 \cdot 10^{-6} \cdot f$ | $f$ = measured value |

## Mobile Laboratory - Halver

Calibration and Measurement Capabilities (CMC)

| Measurement quantity <br> / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty ${ }^{1}$ | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Length <br> Cylindrical setting gauges * <br> Ring gauges Diameter | 10 mm to | 100 mm | VDI/VDE/DGQ 2618 <br> Part 4.1:2006 <br> Option 3 and 4 | $0.8 \mu \mathrm{~m}+14 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Plug gauges Diameter | 3 mm to | 100 mm |  | $0.8 \mu \mathrm{~m}+14 \cdot 10^{-6} \cdot d$ |  |
| Calipers for external, internal and depth dimensions * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.1:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length 300 mm = final value of the measuring range |
| Depth calipers* | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.2:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Micrometers* | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.1:2001 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of the measuring range |
| Mechanical dial gauges * | to | 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Digital indicator gauges * | to | 100 mm | VDI/VDE/DGQ/DKD 2618 <br> Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Dial indicators * | to | 3 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 11.2:2002 } \end{aligned}$ | $0.7 \mu \mathrm{~m}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Halver



This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Braunschweig

## Permanent Laboratory - Braunschweig

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| DC and Low frequency <br> DC voltage <br> Measurement instruments | $\begin{array}{rlr} 1 \mathrm{mV} & \text { to } & 0.22 \mathrm{~V} \\ >0.22 \mathrm{~V} & \text { to } & 2.2 \mathrm{~V} \\ >2.2 \mathrm{~V} & \text { to } & 22 \mathrm{~V} \\ >22 \mathrm{~V} & \text { to } & 220 \mathrm{~V} \\ >220 \mathrm{~V} & \text { to } & 1000 \mathrm{~V} \end{array}$ |  | $\begin{aligned} & 15 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+25 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+0.25 \mathrm{mV} \\ & 15 \cdot 10^{-6} \cdot U+2 \mathrm{mV} \end{aligned}$ | $U=$ measured value |
| DC voltage Sources | $\begin{array}{rlr} 1 \mathrm{mV} & \text { to } & 1 \mathrm{~V} \\ >1 \mathrm{~V} & \text { to } & 10 \mathrm{~V} \\ >10 \mathrm{~V} & \text { to } & 100 \mathrm{~V} \\ >100 \mathrm{~V} & \text { to } & 1000 \mathrm{~V} \end{array}$ |  | $\begin{aligned} & 30 \cdot 10^{-6} \cdot U+3 \mu \mathrm{~V} \\ & 30 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 30 \cdot 10^{-6} \cdot U+50 \mu \mathrm{~V} \\ & 35 \cdot 10^{-6} \cdot U+1 \mathrm{mV} \end{aligned}$ |  |
| DC current Measurement instruments | $\begin{array}{rrr} 1 \mu \mathrm{~A} & \text { to } & 2.2 \mathrm{~mA} \\ >2.2 \mathrm{~mA} & \text { to } & 22 \mathrm{~mA} \\ >22 \mathrm{~mA} & \text { to } & 220 \mathrm{~mA} \\ >220 \mathrm{~mA} & \text { to } & 2.2 \mathrm{~A} \\ >2.2 \mathrm{~A} & \text { to } & 20 \mathrm{~A} \end{array}$ |  | $\begin{gathered} 80 \cdot 10^{-6} \cdot I+0.1 \mu \mathrm{~A} \\ 80 \cdot 10^{-6} \cdot I+0.3 \mu \mathrm{~A} \\ 90 \cdot 10^{-6} \cdot I+5 \mu \mathrm{~A} \\ 0.16 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ 0.6 \cdot 10^{-3} \cdot I+2.5 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| DC current Sources | $\begin{array}{rlr} 1 \mu \mathrm{~A} & \text { to } & 1.2 \mathrm{~mA} \\ >1.2 \mathrm{~mA} & \text { to } & 12 \mathrm{~mA} \\ >12 \mathrm{~mA} & \text { to } & 120 \mathrm{~mA} \\ >120 \mathrm{~mA} & \text { to } & 1 \mathrm{~A} \\ >1 \mathrm{~A} & \text { to } & 10 \mathrm{~A} \end{array}$ | with Shunt $0.01 \Omega$ | $\begin{gathered} 30 \cdot 10^{-6} \cdot I+0.1 \mu \mathrm{~A} \\ 35 \cdot 10^{-6} \cdot I+0.1 \mu \mathrm{~A} \\ 50 \cdot 10^{-6} \cdot I+5 \mu \mathrm{~A} \\ 0.15 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ 0.15 \cdot 10^{-3} \cdot I+0.2 \mu \mathrm{~mA} \end{gathered}$ |  |
| DC resistance Measurement instruments | $\begin{gathered} 1 \Omega \\ 1.9 \Omega \\ 10 \Omega \\ 19 \Omega \\ 100 \Omega ; 190 \Omega ; 1 \mathrm{k} \Omega \\ 1.9 \mathrm{k} \Omega ; 10 \mathrm{k} \Omega ; 19 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega ; 190 \mathrm{k} \Omega ; 1 \mathrm{M} \Omega \\ 1.9 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 19 \mathrm{M} \Omega ; 100 \mathrm{M} \Omega \end{gathered}$ |  | $\begin{array}{r} \hline 0.2 \cdot 10^{-3} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 75 \cdot 10^{-6} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 50 \cdot 10^{-6} \cdot R \\ 0.2 \cdot 10^{-3} \cdot R \\ 0.1 \cdot 10^{-3} \cdot R \\ 0.7 \cdot 10^{-3} \cdot R \end{array}$ | $R=$ measured value |
| DC resistance Resistors | $\begin{array}{rlr} \hline 1 \Omega & \text { to } & 12 \Omega \\ >12 \Omega & \text { to } & 120 \Omega \\ >120 \Omega & \text { to } & 1.2 \mathrm{k} \Omega \\ >1.2 \mathrm{k} \Omega & \text { to } & 12 \mathrm{k} \Omega \\ >12 \mathrm{k} \Omega & \text { to } & 120 \mathrm{k} \Omega \\ >120 \mathrm{k} \Omega & \text { to } & 1.2 \mathrm{M} \Omega \\ >1.2 \mathrm{M} \Omega & \text { to } & 12 \mathrm{M} \Omega \\ >12 \mathrm{M} \Omega & \text { to } & 120 \mathrm{M} \Omega \end{array}$ |  | $\begin{aligned} & 15 \cdot 10^{-6} \cdot R+0.3 \mathrm{~m} \Omega \\ & 15 \cdot 10^{-6} \cdot R+2.5 \mathrm{~m} \Omega \\ & 15 \cdot 10^{-6} \cdot R+15 \mathrm{~m} \Omega \\ & 15 \cdot 10^{-6} \cdot R+0.1 \Omega \\ & 15 \cdot 10^{-6} \cdot R+1.5 \Omega \\ & 15 \cdot 10^{-6} \cdot R+20 \Omega \\ & 30 \cdot 10^{-6} \cdot R+1 \mathrm{k} \Omega \\ & 0.3 \cdot 10^{-3} \cdot R+80 \mathrm{k} \Omega \end{aligned}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Braunschweig

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC voltage Measurement instruments | 0.1 V to | 0.22 V | $\begin{array}{rlr}  & 20 \mathrm{~Hz} & \text { to } 40 \mathrm{~Hz} \\ >40 \mathrm{~Hz} & \text { to } 20 \mathrm{kHz} \\ > & 20 \mathrm{kHz} & \text { to } 50 \mathrm{kHz} \\ >50 \mathrm{kHz} & \text { to } 100 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.3 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 0.3 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 0.5 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 1.2 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \end{aligned}$ | $U=$ measured value |
|  | $>0.22 \mathrm{~V}$ to | 2.2 V | 20 Hz to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz  <br> $>20 \mathrm{kHz}$ to 50 kHz  <br> $>50 \mathrm{kHz}$ to 100 kHz  <br> $>100 \mathrm{kHz}$ to 300 kHz  <br> $>300 \mathrm{kHz}$ to 500 kHz  <br> $>500 \mathrm{kHz}$ to 1 MHz  | $\begin{gathered} 0.25 \cdot 10^{-3} \cdot U+0.11 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+0.07 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.07 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ 0.6 \cdot 10^{-3} \cdot U+0.6 \mathrm{mV} \\ 2 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 3.5 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV} \end{gathered}$ |  |
|  | $>2.2 \mathrm{~V}$ to | 22 V |  | $\begin{gathered} 0.25 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+0.5 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 0.75 \cdot 10^{-3} \cdot U+6 \mathrm{mV} \\ 2.5 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 4 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{gathered}$ |  |
|  | $>22 \mathrm{~V}$ to | 220 V | $\begin{array}{rlr}  & 20 \mathrm{~Hz} & \text { to } 40 \mathrm{~Hz} \\ >40 \mathrm{~Hz} & \text { to } 20 \mathrm{kHz} \\ > & 20 \mathrm{kHz} & \text { to } 50 \mathrm{kHz} \\ > & 50 \mathrm{kHz} & \text { to } 100 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.25 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 0.1 \cdot 10^{-3} \cdot U+8 \mathrm{mV} \\ 0.3 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \\ 1 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{gathered}$ |  |
|  | $>220 \mathrm{~V}$ to | 1100 V | 50 Hz to 1 kHz | $0.1 \cdot 10^{-3} \cdot U+0.25 \mathrm{~V}$ |  |
| AC voltage Sources | 0.1 V to | 0.12 V | $\begin{array}{rlr}  & 20 \mathrm{~Hz} & \text { to } 40 \mathrm{~Hz} \\ >40 \mathrm{~Hz} & \text { to } 20 \mathrm{kHz} \\ > & 20 \mathrm{kHz} & \text { to } 50 \mathrm{kHz} \\ >50 \mathrm{kHz} & \text { to } 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.1 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 0.1 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 0.2 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \\ 1 \cdot 10^{-3} \cdot U+50 \mu \mathrm{~V} \end{array}$ |  |
|  | $>0.12 \mathrm{~V}$ to | 1.2 V |  | $\begin{gathered} 0.2 \cdot 10^{-3} \cdot U+0.2 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+0.1 \mathrm{mV} \\ 1 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV} \\ 3.5 \cdot 10^{-3} \cdot U+0.4 \mathrm{mV} \\ 12 \cdot 10^{-3} \cdot U+2 \mathrm{mV} \end{gathered}$ |  |
|  | $>1.2 \mathrm{~V}$ to | 12 V |  20 Hz to <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz  <br> $>50 \mathrm{kHz}$ to 100 kHz  <br> $>100 \mathrm{kHz}$ to 300 kHz  <br> $>300 \mathrm{kHz}$ to 1 MHz  | $\begin{gathered} 0.1 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 0.15 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 0.35 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 1 \cdot 10^{-3} \cdot U+1 \mathrm{mV} \\ 3.5 \cdot 10^{-3} \cdot U+4 \mathrm{mV} \\ 12 \cdot 10^{-3} \cdot U+15 \mathrm{mV} \end{gathered}$ |  |
|  | $>12 \mathrm{~V}$ to | 120 V | $\begin{array}{rlr}  & 20 \mathrm{~Hz} & \text { to } 40 \mathrm{~Hz} \\ >40 \mathrm{~Hz} & \text { to } 20 \mathrm{kHz} \\ > & 20 \mathrm{kHz} & \text { to } 50 \mathrm{kHz} \\ >50 \mathrm{kHz} & \text { to } 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot U+15 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 0.4 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 1.5 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{array}$ |  |
|  | $>120 \mathrm{~V}$ to | 700 V | 40 Hz to 1 kHz | $0.55 \cdot 10^{-3} \cdot U+20 \mathrm{mV}$ |  |

Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Permanent Laboratory - Braunschweig

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure |  | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC current Measurement instruments | $\begin{aligned} 220 \mu \mathrm{~A} & \text { to } \\ >2.2 \mathrm{~mA} & \text { to } \\ >22 \mathrm{~mA} & \text { to } \\ >220 \mathrm{~mA} & \text { to } \\ >2.2 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 2.2 \mathrm{~mA} \\ 22 \mathrm{~mA} \\ 220 \mathrm{~mA} \\ 2.2 \mathrm{~A} \\ 10 \mathrm{~A} \end{array}$ | 40 Hz to | 1 kHz | $\begin{gathered} 0.2 \cdot 10^{-3} \cdot I+0.5 \mu \mathrm{~A} \\ 0.25 \cdot 10^{-3} \cdot I+1.5 \mu \mathrm{~A} \\ 0.5 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ 1.2 \cdot 10^{-3} \cdot I+0.22 \mathrm{~mA} \\ 1.2 \cdot 10^{-3} \cdot I+2.5 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| AC current Sources | $\begin{aligned} 200 \mu \mathrm{~A} & \text { to } \\ >1.2 \mathrm{~mA} & \text { to } \\ >12 \mathrm{~mA} & \text { to } \\ >120 \mathrm{~mA} & \text { to } \end{aligned}$ | $\begin{array}{r} 1.2 \mathrm{~mA} \\ 12 \mathrm{~mA} \\ 120 \mathrm{~mA} \\ 1 \mathrm{~A} \end{array}$ | 45 Hz to | 1 kHz | $\begin{aligned} & 0.5 \cdot 10^{-3} \cdot I+0.5 \mu \mathrm{~A} \\ & 0.5 \cdot 10^{-3} \cdot I+5 \mu \mathrm{~A} \\ & 0.5 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ & 1 \cdot 10^{-3} \cdot I+0.5 \mathrm{~mA} \end{aligned}$ |  |
| Time and frequency Frequency | 5 MHz ; 10 | MHz |  |  | $7 \cdot 10^{-11} \cdot f+u_{\text {Tf }}$ | $f$ = measured value |
| Frequency Measurement instruments | 1 Hz to | 100 kHz |  |  | $\begin{aligned} & 2 \cdot\left[\left(5 \cdot 10^{-11} \cdot f\right)^{2}+(1 \mu \mathrm{~Hz})^{2}+\right. \\ & \left.\left(u_{\mathrm{Tf}}\right)^{2}\right]^{1 / 2} \end{aligned}$ |  |
|  | $>100 \mathrm{kHz}$ to | 1 GHz |  |  | $\begin{aligned} & 2 \cdot\left[\left(5 \cdot 10^{-11} \cdot f\right)^{2}+(1 \mathrm{~Hz})^{2}+\right. \\ & \left.\left(u_{\mathrm{Tf}}\right)^{2}\right]^{1 / 2} \end{aligned}$ | $u_{\mathrm{Tf}}=$ trigger uncertainty |
| Frequency Generators | 10 Hz to | 1 GHz |  |  | $2 \cdot\left[\left(1 \cdot 10^{-9} \cdot f\right)^{2}+\left(u_{\text {Tf }}\right)^{2}\right]^{1 / 2}$ | $u_{\mathrm{Tf}}=$ trigger uncertainty |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Leipzig

Permanent Laboratory - Leipzig

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Length * |  |  |  |  |
| Calipers for external, internal and depth dimensions | 0 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 9.1:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |

[^3]Date of issue:
10.01.2024

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Wetzlar

## Permanent Laboratory - Wetzlar

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| DC and Low frequency DC voltage Measurement instruments | $\begin{array}{rrr} 100 \mu \mathrm{~V} & \text { to } & <220 \mathrm{mV} \\ 220 \mathrm{mV} & \text { to } & <2.2 \mathrm{~V} \\ 2.2 \mathrm{~V} & \text { to } & <11 \mathrm{~V} \\ 11 \mathrm{~V} & \text { to } & <22 \mathrm{~V} \\ 22 \mathrm{~V} & \text { to } & <220 \mathrm{~V} \\ 220 \mathrm{~V} & \text { to } & 1100 \mathrm{~V} \end{array}$ |  | $\begin{aligned} & 12 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 11 \cdot 10^{-6} \cdot U+2 \mu \mathrm{~V} \\ & 11 \cdot 10^{-6} \cdot U+7 \mu \mathrm{~V} \\ & 11 \cdot 10^{-6} \cdot U+9 \mu \mathrm{~V} \\ & 12 \cdot 10^{-6} \cdot U+0.16 \mathrm{mV} \\ & 14 \cdot 10^{-6} \cdot U+1.2 \mathrm{mV} \end{aligned}$ | $U=$ measured value |
| DC current Measurement instruments | $50 \mu \mathrm{~A}$ to $<220 \mu \mathrm{~A}$ <br> 0.22 mA to $<2.2 \mathrm{~mA}$ <br> 2.2 mA to $<22 \mathrm{~mA}$ <br> 22 mA to $<220 \mathrm{~mA}$ <br> 0.22 A to 2.2 A <br> $>2.2 \mathrm{~A}$ to 11 A |  | $\begin{gathered} \hline 69 \cdot 10^{-6} \cdot I+12 \mathrm{nA} \\ 68 \cdot 10^{-6} \cdot I+16 \mathrm{nA} \\ 68 \cdot 10^{-6} \cdot I+0.16 \mu \mathrm{~A} \\ 80 \cdot 10^{-6} \cdot I+1.6 \mu \mathrm{~A} \\ 0.11 \cdot 10^{-3} \cdot I+43 \mu \mathrm{~A} \\ 0.69 \cdot 10^{-3} \cdot I+0.46 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| Current clamps | $\begin{array}{rlr} \hline 1 \mathrm{~mA} & \text { to } & 20 \mathrm{~A} \\ >20 \mathrm{~A} & \text { to } & 900 \mathrm{~A} \end{array}$ |  | $\begin{aligned} & \hline 2.5 \cdot 10^{-3} \cdot I \\ & 4.0 \cdot 10^{-3} \cdot I \end{aligned}$ |  |
| AC voltage Measurement instruments | 2 mV to $<2.2 \mathrm{mV}$ | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to <br> $>40 \mathrm{~Hz}$ to <br> $>20 \mathrm{kHz}$  <br> $>$ 20 kHz to <br> $>50 \mathrm{kHz}$ to <br> $>50 \mathrm{kHz}$  | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.14 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.47 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \end{gathered}$ | $U=$ measured value |
|  | 2.2 mV to $<22 \mathrm{mV}$ | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to <br> $>40 \mathrm{~Hz}$  <br> $>$ 40 Hz <br> $>$ 20 kHz <br> $>50 \mathrm{kHz}$ 50 kHz <br> $>50 \mathrm{kHz}$ to | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.14 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.47 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \end{gathered}$ |  |
|  | 22 mV to $<220 \mathrm{mV}$ | 10 Hz to 20 Hz <br> $>$ 20 Hz to <br> $>40 \mathrm{~Hz}$ to <br> $>$ 20 kHz <br> $>$ 20 kHz <br> $>$ to <br> $>50 \mathrm{kHz}$ to <br>  100 kHz | $\begin{gathered} 0.76 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \\ 0.13 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \\ 0.4 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \\ 0.42 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \end{gathered}$ |  |
|  | 0.22 V to $<2.2 \mathrm{~V}$ | 10 Hz to 20 Hz <br> $>$ 20 Hz to <br> $>40 \mathrm{~Hz}$ to 40 Hz <br> $>$ 20 kHz <br> $>$ 20 kHz to <br> $>50 \mathrm{kHz}$ to <br>  100 kHz | $\begin{gathered} 0.76 \cdot 10^{-3} \cdot U+0.12 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 0.1 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.16 \cdot 10^{-3} \cdot U+27 \mu \mathrm{~V} \\ 0.32 \cdot 10^{-3} \cdot U+96 \mu \mathrm{~V} \end{gathered}$ |  |
|  | 2.2 V to $<22 \mathrm{~V}$ |  | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ 95 \cdot 10^{-6} \cdot U+0.22 \mathrm{mV} \\ 0.16 \cdot 10^{-3} \cdot U+0.31 \mathrm{mV} \\ 0.32 \cdot 10^{-3} \cdot U+0.53 \mathrm{mV} \end{gathered}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Wetzlar

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range |  | Measurement conditions / Procedure |  | Expanded measurement of uncertainty | Remarks |
| AC voltage Measurement instruments | 22 V to | < 220 V | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ &>20 \mathrm{~Hz} \text { to } \\ &>40 \mathrm{~Hz} \text { to } \\ &>20 \mathrm{kHz} \text { to } \\ &>50 \mathrm{kHz} \text { to } \end{aligned}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+12 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+5 \mathrm{mV} \\ 95 \cdot 10^{-6} \cdot U+3.6 \mathrm{mV} \\ 0.29 \cdot 10^{-3} \cdot U+5.6 \mathrm{mV} \\ 0.7 \cdot 10^{-3} \cdot U+12 \mathrm{mV} \end{gathered}$ | $U=$ measured value |
|  | 220 V to | 1100 V | $\begin{aligned} 45 \mathrm{~Hz} & \text { to } \\ >330 \mathrm{~Hz} & \text { to } \\ >10 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{aligned} & 330 \mathrm{~Hz} \\ & 10 \mathrm{kHz} \\ & 33 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 0.16 \cdot 10^{-3} \cdot U+11 \mathrm{mV} \\ & 0.12 \cdot 10^{-3} \cdot U+11 \mathrm{mV} \\ & 0.16 \cdot 10^{-3} \cdot U+11 \mathrm{mV} \end{aligned}$ |  |
| AC current Measurement instruments | $50 \mu \mathrm{~A}$ to | < $220 \mu \mathrm{~A}$ | $\begin{array}{r} 10 \mathrm{~Hz} \text { to } \\ >20 \mathrm{~Hz} \text { to } \\ >40 \mathrm{~Hz} \text { to } \\ >330 \mathrm{~Hz} \text { to } \\ >3.3 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 330 \mathrm{~Hz} \\ 3.3 \mathrm{kHz} \\ 5 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.92 \cdot 10^{-3} \cdot I+0.04 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+0.04 \mu \mathrm{~A} \\ 0.18 \cdot 10^{-3} \cdot I+0.03 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.06 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.06 \mu \mathrm{~A} \end{gathered}$ | $I=$ measured value |
|  | 0.22 mA to | $<2.2 \mathrm{~mA}$ | $\begin{array}{r} 10 \mathrm{~Hz} \text { to } \\ >20 \mathrm{~Hz} \text { to } \\ >40 \mathrm{~Hz} \text { to } \\ >330 \mathrm{~Hz} \text { to } \\ >3.3 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 330 \mathrm{~Hz} \\ 3.3 \mathrm{kHz} \\ 5 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.92 \cdot 10^{-3} \cdot I+0.07 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+0.06 \mu \mathrm{~A} \\ 0.18 \cdot 10^{-3} \cdot I+0.07 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.6 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.6 \mu \mathrm{~A} \end{gathered}$ |  |
|  | 2.2 mA to | $<22 \mathrm{~mA}$ | $\begin{array}{r} 10 \mathrm{~Hz} \text { to } \\ >20 \mathrm{~Hz} \text { to } \\ >40 \mathrm{~Hz} \text { to } \\ >330 \mathrm{~Hz} \text { to } \\ >3.3 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 20 \mathrm{~Hz} \\ 40 \mathrm{~Hz} \\ 330 \mathrm{~Hz} \\ 3.3 \mathrm{kHz} \\ 5 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.92 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+0.6 \mu \mathrm{~A} \\ 0.18 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \end{gathered}$ |  |
|  | 22 mA to | <220 mA | $\begin{array}{r} 10 \mathrm{~Hz} \text { to } \\ >20 \mathrm{~Hz} \text { to } \\ >40 \mathrm{~Hz} \text { to } \\ >330 \mathrm{~Hz} \text { to } \\ >3.3 \mathrm{kHz} \text { to } \end{array}$ | 20 Hz 40 Hz 330 Hz 3.3 kHz 5 kHz | $\begin{gathered} 0.92 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ 0.2 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \end{gathered}$ |  |
|  | 0.22 A to | 2.2 A | $\begin{array}{r} 40 \mathrm{~Hz} \text { to } \\ >330 \mathrm{~Hz} \text { to } \\ >3.3 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 330 \mathrm{~Hz} \\ 3.3 \mathrm{kHz} \\ 5 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.86 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 0.98 \cdot 10^{-3} \cdot I+0.13 \mathrm{~mA} \\ & 0.98 \cdot 10^{-3} \cdot I+0.13 \mathrm{~mA} \end{aligned}$ |  |
|  | $>2.2 \mathrm{~A}$ to | 11 A | $\begin{aligned} 50 \mathrm{~Hz} & \text { to } \\ >330 \mathrm{~Hz} & \text { to } \end{aligned}$ | $\begin{array}{r} 330 \mathrm{~Hz} \\ 1 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 1.2 \cdot 10^{-3} \cdot I+2.4 \mathrm{~mA} \\ & 3.9 \cdot 10^{-3} \cdot I+2.4 \mathrm{~mA} \end{aligned}$ |  |
| Current clamps | $\begin{aligned} 1 \mathrm{~mA} & \text { to } \\ >20 \mathrm{~A} & \text { to } \end{aligned}$ | $\begin{array}{r} 20 \mathrm{~A} \\ 900 \mathrm{~A} \end{array}$ | 45 Hz to | 400 Hz | $\begin{aligned} & 2.5 \cdot 10^{-3} \cdot I \\ & 4.0 \cdot 10^{-3} \cdot I \end{aligned}$ |  |
| DC power Measurement instruments | 100 mW to | 12 kW | Product of $\begin{array}{rr} 1 \mathrm{~V} \leq & U \\ 0.1 \mathrm{~A} \leq & I \end{array}$ | $\begin{aligned} & \text { and } I ; \\ & \leq 600 \mathrm{~V} \\ & \leq 20 \mathrm{~A} \end{aligned}$ | $1.6 \cdot 10^{-3} \cdot P$ | $P=$ measured value |
| AC power Measurement instruments | 100 mW to | 12 kW | $\begin{array}{rc} 45 \mathrm{~Hz} & \text { to } \\ 0.5 \leq & \cos \varphi \\ 1 \mathrm{~V} \leq & U \\ 0.1 \mathrm{~A} \leq & I \end{array}$ | $\begin{array}{r} 65 \mathrm{~Hz} \\ \leq 1.0 \\ \leq 600 \mathrm{~V} \\ \leq 20 \mathrm{~A} \end{array}$ | $0.44 \cdot 10^{-3} \cdot P$ |  |
| Power factor <br> Measurement instruments | $\geq 0.5$ to | $\leq 1.0$ | $230 \text { V; } 2$ <br> 45 Hz to | A $65 \mathrm{~Hz}$ | $1.0 \cdot 10^{-3} \cdot \cos \varphi$ | $\cos \varphi=$ measured value |

Valid from:

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Wetzlar

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| DC resistance Measurement instruments | $\begin{array}{r} 1 \Omega \\ 10 \Omega \\ 100 \Omega \\ 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ 10 \mathrm{~m} \Omega \\ 100 \mathrm{~m} \Omega \end{array}$ |  | $\begin{array}{r} 20 \cdot 10^{-6} \cdot R \\ 9 \cdot 10^{-6} \cdot R \\ 7 \cdot 10^{-6} \cdot R \\ 7 \cdot 10^{-6} \cdot R \\ 30 \cdot 10^{-6} \cdot R \\ 7 \cdot 10^{-6} \cdot R \\ 9 \cdot 10^{-6} \cdot R \\ 12 \cdot 10^{-6} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \end{array}$ | $R=$ measured value with calibrator 5700A |
|  | $0.001 \Omega$ $0.01 \Omega$ $0.1 \Omega$ $1 \Omega$ $10 \Omega$ $100 \Omega$ $1 \mathrm{k} \Omega$ $10 \mathrm{k} \Omega$ $100 \mathrm{k} \Omega$ $1 \mathrm{M} \Omega$ $10 \mathrm{M} \Omega$ $100 \mathrm{M} \Omega$ $1 \mathrm{G} \Omega$ |  | $\begin{array}{r} \hline 1.7 \cdot 10^{-3} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 17 \cdot 10^{-6} \cdot R \\ 30 \cdot 10^{-6} \cdot R \\ 26 \cdot 10^{-6} \cdot R \\ 20 \cdot 10^{-6} \cdot R \\ 20 \cdot 10^{-6} \cdot R \\ 20 \cdot 10^{-6} \cdot R \\ 30 \cdot 10^{-6} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \\ 0.62 \cdot 10^{-3} \cdot R \\ 1.8 \cdot 10^{-3} \cdot R \end{array}$ | $R=$ measured value with fixed resistors |
| Frequency | 10 Hz to 1 GHz |  | $1.0 \cdot 10^{-9} \cdot f$ | $f=$ measured value |
| DC voltage Sources | 10 mV to 100 mV <br> $>100 \mathrm{mV}$ to 1 V <br> $>1 \mathrm{~V}$ to 10 V <br> $>10 \mathrm{~V}$ to 100 V <br> $>100 \mathrm{~V}$ to 1000 V |  | $\begin{aligned} & \hline 5 \cdot 10^{-6} \cdot U+2.5 \mu \mathrm{~V} \\ & 10 \cdot 10^{-6} \cdot U+2.0 \mu \mathrm{~V} \\ & 9 \cdot 10^{-6} \cdot U+3.0 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U \\ & 19 \cdot 10^{-6} \cdot U \end{aligned}$ | $U=$ measured value |
| DC current Sources | $100 \mu \mathrm{~A}$ to 1 mA <br> $>1 \mathrm{~mA}$ to 10 mA <br> $>10 \mathrm{~mA}$ to 100 mA <br> $>100 \mathrm{~mA}$ to 1 A |  | $\begin{array}{r} 73 \cdot 10^{-6} \cdot I \\ 73 \cdot 10^{-6} \cdot I \\ 0.14 \cdot 10^{-3} \cdot I \\ 0.21 \cdot 10^{-3} \cdot I \end{array}$ | $I=$ measured value |
| AC voltage Sources | 10 mV to 100 mV | $\begin{array}{rrr} 40 \mathrm{~Hz} \text { to } & 100 \mathrm{~Hz} \\ >100 \mathrm{~Hz} & \text { to } & 2 \mathrm{kHz} \\ >2 \mathrm{kHz} & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.62 \cdot 10^{-3} \cdot U+4.5 \mu \mathrm{~V} \\ & 0.50 \cdot 10^{-3} \cdot U+5.0 \mu \mathrm{~V} \\ & 0.62 \cdot 10^{-3} \cdot U+4.5 \mu \mathrm{~V} \end{aligned}$ | $U=$ measured value |
|  | $>100 \mathrm{mV}$ to 1 V | 40 Hz to <br> $>100 \mathrm{~Hz}$ to <br> $>2 \mathrm{kHz}$  <br> $>2 \mathrm{kHz}$ to <br> 10 kHz  | $\begin{aligned} & \hline 0.12 \cdot 10^{-3} \cdot U+2.5 \mu \mathrm{~V} \\ & 0.10 \cdot 10^{-3} \cdot U+5.0 \mu \mathrm{~V} \\ & 0.12 \cdot 10^{-3} \cdot U+4.0 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>1 \mathrm{~V}$ to 10 V | 40 Hz to <br> $>100 \mathrm{~Hz}$ to <br> $>2 \mathrm{kHz}$  <br> $>2 \mathrm{kHz}$ to <br> 10 kHz  | $\begin{aligned} & \hline 0.13 \cdot 10^{-3} \cdot U \\ & 0.16 \cdot 10^{-3} \cdot U \\ & 0.23 \cdot 10^{-3} \cdot U \end{aligned}$ |  |
|  | $>10 \mathrm{~V}$ to 100 V | 40 Hz to 100 Hz <br> $>100 \mathrm{~Hz}$ to 2 kHz <br> $>2 \mathrm{kHz}$ to 10 kHz | $\begin{aligned} & 0.13 \cdot 10^{-3} \cdot U \\ & 0.11 \cdot 10^{-3} \cdot U \\ & 0.21 \cdot 10^{-3} \cdot U \end{aligned}$ |  |
|  | > 100 V to 1000 V | 40 Hz to <br> $>100 \mathrm{~Hz}$ to <br> $>2 \mathrm{kHz}$  <br> $>2 \mathrm{kHz}$ to <br> 10 kHz  | $\begin{aligned} & \hline 0.24 \cdot 10^{-3} \cdot U \\ & 0.16 \cdot 10^{-3} \cdot U \\ & 0.27 \cdot 10^{-3} \cdot U \end{aligned}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Wetzlar

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| AC current Sources | $100 \mu \mathrm{~A}$ to 1 mA | $\begin{array}{rrr} 40 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \\ >100 \mathrm{~Hz} \text { to } & 1 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.49 \cdot 10^{-3} \cdot I \\ & 0.48 \cdot 10^{-3} \cdot I \end{aligned}$ | $I=$ measured value |
|  | $>1 \mathrm{~mA}$ to 10 mA | $\begin{array}{rrr} 40 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \\ >100 \mathrm{~Hz} \text { to } & 1 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.48 \cdot 10^{-3} \cdot I \\ & 0.47 \cdot 10^{-3} \cdot I \end{aligned}$ |  |
|  | $>10 \mathrm{~mA}$ to 100 mA | $\begin{array}{r} 40 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \\ >100 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.49 \cdot 10^{-3} \cdot I \\ & 0.47 \cdot 10^{-3} \cdot I \end{aligned}$ |  |
|  | $>100 \mathrm{~mA}$ to 1 A | $\begin{array}{rrr} 40 \mathrm{~Hz} \text { to } & 100 \mathrm{~Hz} \\ >100 \mathrm{~Hz} & \text { to } & 1 \mathrm{kHz} \end{array}$ | $\begin{aligned} & \hline 1.1 \cdot 10^{-3} \cdot I \\ & 1.1 \cdot 10^{-3} \cdot I \end{aligned}$ |  |
| DC resistance Resistors | $1 \Omega$ to $10 \Omega$ <br> $>10 \Omega$ to $100 \Omega$ <br> $>100 \Omega$ to $1 \mathrm{k} \Omega$ <br> $>1 \mathrm{k} \Omega$ to $<10 \mathrm{k} \Omega$ <br> $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ <br> $>100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ <br> $>1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$ <br> $>10 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$ |  | $\begin{array}{r} 52 \cdot 10^{-6} \cdot R \\ 27 \cdot 10^{-6} \cdot R \\ 18 \cdot 10^{-6} \cdot R \\ 25 \cdot 10^{-6} \cdot R \\ 16 \cdot 10^{-6} \cdot R \\ 22 \cdot 10^{-6} \cdot R \\ 55 \cdot 10^{-6} \cdot R \\ 0.59 \cdot 10^{-3} \cdot R \\ \hline \end{array}$ | $R=$ measured value <br> 4-wire connection |
| Oscilloscope quantities Vertical deflection | 1 mV to 5 V | $50 \Omega$ | $2.0 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV}$ | $U=$ measured value |
|  | 5 mV to 200 V | $1 \mathrm{M} \Omega$ |  |  |
| Horizontal deflection | 2 ns to 10 ns |  | 6 ps | $t=$ measured value |
|  | 20 ns to $1 \mu \mathrm{~s}$ |  | $50 \cdot 10^{-6} \cdot t+0.6 \mathrm{~ns}$ |  |
|  | $2 \mu \mathrm{~s}$ to 5 s |  | $4.0 \cdot 10^{-3} \cdot t$ |  |
| Rise time | $\geq 1 \mathrm{~ns}$ | 25 mV to 1 V | $50 \cdot 10^{-3} \cdot t+3 \mathrm{ps}$ | $t=$ measured value at 1 MHz |

## On-site Calibration - Wetzlar



Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

Annex to the Partial Accreditation Certificate D-K-15015-01-01

## On-site Calibration - Wetzlar

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| DC current Measurement instruments | $50 \mu \mathrm{~A}$ to $<220 \mu \mathrm{~A}$ <br> 0.22 mA to $<2.2 \mathrm{~mA}$ <br> 2.2 mA to $<22 \mathrm{~mA}$ <br> 22 mA to $<220 \mathrm{~mA}$ <br> 0.22 A to 2.2 A <br> $>2.2 \mathrm{~A}$ to 11 A |  | $\begin{gathered} 69 \cdot 10^{-6} \cdot I+12 \mathrm{nA} \\ 68 \cdot 10^{-6} \cdot I+16 \mathrm{nA} \\ 68 \cdot 10^{-6} \cdot I+0.16 \mu \mathrm{~A} \\ 80 \cdot 10^{-6} \cdot I+1.6 \mu \mathrm{~A} \\ 0.11 \cdot 10^{-3} \cdot I+43 \mu \mathrm{~A} \\ 0.69 \cdot 10^{-3} \cdot I+0.46 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| Current clamps | $\begin{array}{rlr} 1 \mathrm{~mA} & \text { to } & 10 \mathrm{~A} \\ >10 \mathrm{~A} & \text { to } & 500 \mathrm{~A} \end{array}$ |  | $\begin{aligned} & 3.0 \cdot 10^{-3} \cdot I \\ & 5.0 \cdot 10^{-3} \cdot I \end{aligned}$ | $I=$ measured value with 1 to 50 turn coils |
| AC voltage Measurement instruments | 2 mV to $<2.2 \mathrm{mV}$ | $\begin{array}{rrr} \hline 10 \mathrm{~Hz} & \text { to } & 20 \mathrm{~Hz} \\ > & 20 \mathrm{~Hz} & \text { to } \\ >40 \mathrm{~Hz} & \text { to } & 20 \mathrm{~Hz} \\ > & 20 \mathrm{kHz} & \text { to } \\ >50 \mathrm{kHz} & \text { to } & 100 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.14 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 0.47 \cdot 10^{-3} \cdot U+6 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \end{gathered}$ | $U=$ measured value |
|  | 2.2 mV to $<22 \mathrm{mV}$ |  10 Hz to <br> $>$ 20 Hz to 20 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz <br> $>$ 20 kHz to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.14 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 0.47 \cdot 10^{-3} \cdot U+8 \mu \mathrm{~V} \\ 1.1 \cdot 10^{-3} \cdot U+10 \mu \mathrm{~V} \\ \hline \end{gathered}$ |  |
|  | 22 mV to $<220 \mathrm{mV}$ |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz  <br> $>$ 20 kHz to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.76 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 0.28 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \\ 0.13 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \\ 0.4 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \\ 0.42 \cdot 10^{-3} \cdot U+13 \mu \mathrm{~V} \end{gathered}$ |  |
|  | 0.22 V to $<2.2 \mathrm{~V}$ |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>$ 40 Hz to 20 kHz <br> $>$ 20 kHz to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.76 \cdot 10^{-3} \cdot U+0.12 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+40 \mu \mathrm{~V} \\ 0.1 \cdot 10^{-3} \cdot U+15 \mu \mathrm{~V} \\ 0.16 \cdot 10^{-3} \cdot U+27 \mu \mathrm{~V} \\ 0.32 \cdot 10^{-3} \cdot U+96 \mu \mathrm{~V} \end{gathered}$ |  |
|  | 2.2 V to $<22 \mathrm{~V}$ |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz  <br> $>$ 20 kHz to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+1.2 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+0.45 \mathrm{mV} \\ 95 \cdot 10^{-6} \cdot U+0.22 \mathrm{mV} \\ 0.16 \cdot 10^{-3} \cdot U+0.31 \mathrm{mV} \\ 0.32 \cdot 10^{-3} \cdot U+0.53 \mathrm{mV} \end{gathered}$ |  |
|  | 22 V to $<220 \mathrm{~V}$ |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>40 \mathrm{~Hz}$ to 20 kHz  <br> $>$ 20 kHz to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz | $\begin{gathered} 0.69 \cdot 10^{-3} \cdot U+12 \mathrm{mV} \\ 0.2 \cdot 10^{-3} \cdot U+5 \mathrm{mV} \\ 95 \cdot 10^{-6} \cdot U+3.6 \mathrm{mV} \\ 0.29 \cdot 10^{-3} \cdot U+5.6 \mathrm{mV} \\ 0.7 \cdot 10^{-3} \cdot U+12 \mathrm{mV} \end{gathered}$ |  |
|  | 220 V 1100 V | $\begin{array}{rll} 45 \mathrm{~Hz} & \text { to } & 330 \mathrm{~Hz} \\ >330 \mathrm{~Hz} & \text { to } & 10 \mathrm{kHz} \\ >10 \mathrm{kHz} & \text { to } & 33 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.16 \cdot 10^{-3} \cdot U+11 \mathrm{mV} \\ & 0.12 \cdot 10^{-3} \cdot U+11 \mathrm{mV} \\ & 0.16 \cdot 10^{-3} \cdot U+11 \mathrm{mV} \end{aligned}$ |  |
| AC current Measurement instruments | $50 \mu \mathrm{~A}$ to $<220 \mu \mathrm{~A}$ |  10 Hz to 20 Hz <br> $>$ 20 Hz to 40 Hz <br> $>40 \mathrm{~Hz}$ to 330 Hz <br> $>$ 330 Hz to 3.3 kHz <br> $>$ 3.3 kHz to 5 kHz | $\begin{array}{r} 0.92 \cdot 10^{-3} \cdot I+0.04 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+0.04 \mu \mathrm{~A} \\ 0.18 \cdot 10^{-3} \cdot I+0.03 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.06 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.06 \mu \mathrm{~A} \end{array}$ | $I=$ measured value |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## On-site Calibration - Wetzlar

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| AC current Measurement instruments | 0.22 mA to $<2.2 \mathrm{~mA}$ | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 330 Hz <br> $>330 \mathrm{~Hz}$ to 3.3 kHz <br> $>3.3 \mathrm{kHz}$ to 5 kHz | $\begin{gathered} 0.92 \cdot 10^{-3} \cdot I+0.07 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+0.06 \mu \mathrm{~A} \\ 0.18 \cdot 10^{-3} \cdot I+0.07 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.6 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+0.6 \mu \mathrm{~A} \end{gathered}$ | $I=$ measured value |
|  | 2.2 mA to $<22 \mathrm{~mA}$ | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 330 Hz <br> $>330 \mathrm{~Hz}$ to 3.3 kHz <br> $>3.3 \mathrm{kHz}$ to 5 kHz | $\begin{gathered} 0.92 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+0.6 \mu \mathrm{~A} \\ 0.18 \cdot 10^{-3} \cdot I+0.7 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \end{gathered}$ |  |
|  | 22 mA to $<220 \mathrm{~mA}$ | 10 Hz to 20 Hz <br> $>20 \mathrm{~Hz}$ to 40 Hz <br> $>40 \mathrm{~Hz}$ to 330 Hz <br> $>330 \mathrm{~Hz}$ to 3.3 kHz <br> $>3.3 \mathrm{kHz}$ to 5 kHz | $\begin{gathered} \hline 0.92 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ 0.48 \cdot 10^{-3} \cdot I+6 \mu \mathrm{~A} \\ 0.2 \cdot 10^{-3} \cdot I+7 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ 0.8 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \end{gathered}$ |  |
|  | 0.22 A to 2.2 A | $\begin{array}{rrr} 40 \mathrm{~Hz} & \text { to } & 330 \mathrm{~Hz} \\ >330 \mathrm{~Hz} & \text { to } & 3.3 \mathrm{kHz} \\ >3.3 \mathrm{kHz} & \text { to } & 5 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.86 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ & 0.98 \cdot 10^{-3} \cdot I+0.13 \mathrm{~mA} \\ & 0.98 \cdot 10^{-3} \cdot I+0.13 \mathrm{~mA} \end{aligned}$ |  |
|  | $>2.2 \mathrm{~A}$ to 11 A | $\begin{array}{rrr} 50 \mathrm{~Hz} \text { to } & 330 \mathrm{~Hz} \\ >330 \mathrm{~Hz} & \text { to } & 1 \mathrm{kHz} \end{array}$ | $1.2 \cdot 10^{-3} \cdot I+2.4 \mathrm{~mA}$ <br> $3.9 \cdot 10^{-3} \cdot I+2.4 \mathrm{~mA}$ |  |
| Current clamps | $\begin{array}{rlr} \hline 1 \mathrm{~mA} & \text { to } & 10 \mathrm{~A} \\ >10 \mathrm{~A} & \text { to } & 500 \mathrm{~A} \end{array}$ | 45 Hz to 400 Hz | $\begin{aligned} & 4.0 \cdot 10^{-3} \cdot I \\ & 5.0 \cdot 10^{-3} \cdot I \end{aligned}$ | $I=$ measured value with 1 to 50 turn coils |
| DC power Measurement instruments | 100 mW to 10 kW | Product of $U$ and $I$; $100 \mathrm{mV} \leq U \leq 1000 \mathrm{~V}$ $1 \mathrm{~mA} \leq I \leq 10 \mathrm{~A}$ | $1.5 \cdot 10^{-3} \cdot P$ | $P=$ measured value |
| DC resistance Measurement instruments | $\begin{array}{r} 1 \Omega \\ 10 \Omega \\ 100 \Omega \\ 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ 10 \mathrm{~m} \Omega \\ 100 \mathrm{M} \Omega \end{array}$ |  | $\begin{array}{r} \hline 20 \cdot 10^{-6} \cdot R \\ 9 \cdot 10^{-6} \cdot R \\ 7 \cdot 10^{-6} \cdot R \\ 7 \cdot 10^{-6} \cdot R \\ 30 \cdot 10^{-6} \cdot R \\ 7 \cdot 10^{-6} \cdot R \\ 9 \cdot 10^{-6} \cdot R \\ 12 \cdot 10^{-6} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \end{array}$ | $R=$ measured value with calibrator 5700A |
|  | $0.001 \Omega$ <br> $0.01 \Omega$ <br> $0.1 \Omega$ <br> $1 \Omega$ <br> $10 \Omega$ <br> $100 \Omega$ <br> $1 \mathrm{k} \Omega$ <br> $10 \mathrm{k} \Omega$ <br> $100 \mathrm{k} \Omega$ <br> $1 \mathrm{M} \Omega$ <br> $10 \mathrm{M} \Omega$ <br> $100 \mathrm{M} \Omega$ <br> $1 \mathrm{G} \Omega$ |  | $\begin{array}{r} \hline 1.7 \cdot 10^{-3} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 0.12 \cdot 10^{-3} \cdot R \\ 17 \cdot 10^{-6} \cdot R \\ 30 \cdot 10^{-6} \cdot R \\ 26 \cdot 10^{-6} \cdot R \\ 20 \cdot 10^{-6} \cdot R \\ 20 \cdot 10^{-6} \cdot R \\ 20 \cdot 10^{-6} \cdot R \\ 30 \cdot 10^{-6} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \\ 0.62 \cdot 10^{-3} \cdot R \\ 1.8 \cdot 10^{-3} \cdot R \end{array}$ | with fixed resistors |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Wetzlar

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| DC voltage Sources | 10 mV to 100 mV <br> $>100 \mathrm{mV}$ to 1 V <br> $>1 \mathrm{~V}$ to 10 V <br> $>10 \mathrm{~V}$ to 100 V <br> $>100 \mathrm{~V}$ to 1 kV |  | $\begin{aligned} & 0.25 \cdot 10^{-3} \cdot U+2.0 \mu \mathrm{~V} \\ & 60 \cdot 10^{-6} \cdot U+2.0 \mu \mathrm{~V} \\ & 75 \cdot 10^{-6} \cdot U+2.0 \mu \mathrm{~V} \\ & 0.1 \cdot 10^{-3} \cdot U \\ & 0.13 \cdot 10^{-3} \cdot U \end{aligned}$ | $U=$ measured value |
| DC current Sources | $\begin{array}{rlr} \hline 100 \mu \mathrm{~A} & \text { to } & 10 \mathrm{~mA} \\ >10 \mathrm{~mA} & \text { to } & 100 \mathrm{~mA} \\ >100 \mathrm{~mA} & \text { to } & 1 \mathrm{~A} \end{array}$ |  | $\begin{aligned} & \hline 1.5 \cdot 10^{-3} \cdot I \\ & 9.9 \cdot 10^{-3} \cdot I \\ & 1.9 \cdot 10^{-3} \cdot I \end{aligned}$ | $I=$ measured value |
| AC voltage Sources | 10 mV to 100 mV <br> $>100 \mathrm{mV}$ to 1 V <br> $>1 \mathrm{~V}$ to 10 V <br> $>10 \mathrm{~V}$ to 100 V <br> $>100 \mathrm{~V}$ to 750 V | 40 Hz to 10 kHz | $\begin{aligned} & 4.5 \cdot 10^{-3} \cdot U+2.0 \mu \mathrm{~V} \\ & 4.5 \cdot 10^{-3} \cdot U+2.0 \mu \mathrm{~V} \\ & 4.5 \cdot 10^{-3} \cdot U \\ & 4.5 \cdot 10^{-3} \cdot U \\ & 3.6 \cdot 10^{-3} \cdot U \end{aligned}$ | $U=$ measured value |
| AC Current Sources | $\begin{array}{rlr} 1 \mathrm{~mA} & \text { to } & 10 \mathrm{~mA} \\ >10 \mathrm{~mA} & \text { to } & 100 \mathrm{~mA} \\ >100 \mathrm{~mA} & \text { to } & 1 \mathrm{~A} \end{array}$ | 40 Hz to 1 kHz | $\begin{array}{r} 0.56 \cdot I \\ 56 \cdot 10^{-3} \cdot I \\ 7.0 \cdot 10^{-3} \cdot I \end{array}$ | $I=$ measured value |
| DC resistance Resistors | $1 \Omega$ to $10 \Omega$ <br> $>10 \Omega$ to $100 \Omega$ <br> $>100 \Omega$ to $1 \mathrm{k} \Omega$ <br> $>1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ <br> $>10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ <br> $>100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ |  | $\begin{array}{r} \hline 0.2 \cdot 10^{-3} \cdot R \\ 0.18 \cdot 10^{-3} \cdot R \\ 85 \cdot 10^{-6} \cdot R \\ 85 \cdot 10^{-6} \cdot R \\ 0.13 \cdot 10^{-3} \cdot R \\ 0.15 \cdot 10^{-3} \cdot R \end{array}$ | $R=$ measured value with 4-wireconnection |
| DC resistance Resistors | $\begin{array}{rlr} \hline>1 \mathrm{M} \Omega & \text { to } & 10 \mathrm{M} \Omega \\ >10 \mathrm{M} \Omega & \text { to } & 100 \mathrm{M} \Omega \end{array}$ |  | $\begin{array}{r} 0.52 \cdot 10^{-3} \cdot R \\ 1.9 \cdot 10^{-3} \cdot R \end{array}$ | with 2-wireconnection |
| Oscilloscope quantities Vertical deflection | 1 mV to 5 V | $50 \Omega$ | $2.0 \cdot 10^{-3} \cdot U+0.15 \mathrm{mV}$ | $U=$ measured value |
|  | 5 mV to 200 V | $1 \mathrm{M} \Omega$ |  |  |
| Horizontal deflection | 2 ns to 10 ns |  | 6 ps | $t=$ measured value |
|  | 20 ns to $1 \mu \mathrm{~s}$ |  | $50 \cdot 10^{-6} \cdot t+0.6 \mathrm{~ns}$ |  |
|  | $2 \mu \mathrm{~s}$ to 5 s |  | $4.0 \cdot 10^{-3} \cdot t$ |  |
| Rise time | $\geq 1$ ns | 25 mV to 1 V | $50 \cdot 10^{-3} \cdot t+3 \mathrm{ps}$ | $t=$ measured value <br> at 1 MHz |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Ruhla

## Permanent Laboratory - Ruhla

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Length |  |  |  |  |
| Calipers for external, internal and depth dimensions * | 0 mm to 500 mm | VDI/VDE/DGQ 2618 <br> Part 9.1:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
|  | $>500 \mathrm{~mm}$ to 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Depth calipers* | 0 mm to 600 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.2:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Height calipers* | 0 mm to 600 mm | VDI/VDE/DGQ 2618 <br> Part 9.3:2006 | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Micrometers* | 0 mm to 300 mm | VDI/VDE/DGQ 2618 Part 10.1:2001 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Internal micrometers with two-point contact * | 25 mm to 100 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
|  | $>100 \mathrm{~mm}$ to 500 mm |  | $4 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
|  | $>500 \mathrm{~mm}$ to 1000 mm |  | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Extensions for Internal micrometers with twopoint contact * | 25 mm to 500 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $2 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l$ |  |
|  | $>500 \mathrm{~mm}$ to 1000 mm |  | $3.5 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l$ |  |
| Internal micrometers with three-point contact * | 3 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 10.8:2002 | $4 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Micrometers with dial indicator * | 0 mm to 100 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.3:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Reference gauges for micrometers * | 25 mm to 500 mm | VDI/VDE/DGQ 2618 <br> Part 4.4:2009 | $0.5 \mu \mathrm{~m}+6 \cdot 10^{-6} \cdot l$ |  |
| Lever gauges (quicktests) for external measurements * | 0 mm to 100 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 12.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Lever gauges (quicktests) for internal measurements * | 2.5 mm to 500 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 13.1:2005 } \end{aligned}$ | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Square $90^{\circ}$ * | 40 mm to 500 mm | VDI/VDE/DGQ/DKD 2618 Part 7.1:2019 | $4 \mu \mathrm{~m}+6 \cdot 10^{-6} \cdot l_{z}$ | $l_{z}=$ leg length |
| Protractors * | $0^{\circ}$ to $360^{\circ}$ | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 7.2:2008 } \end{aligned}$ | 1' |  |
| Mechanical dial gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Digital indicator gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Dial indicators * | to $\quad 3 \mathrm{~mm}$ | VDI/VDE/DGQ 2618 Part 11.2:2002 | $0.6 \mu \mathrm{~m}$ |  |
| Lever gauges* | to 1.6 mm | VDI/VDE/DGQ 2618 <br> Part 11.3:2002 | $0.8 \mu \mathrm{~m}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

| Permanent Laboratory - Ruhla |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Plug gauges * Diameter | 2 mm to | 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.1:2006 } \end{aligned}$ | $0.8 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diamater |
| Roundness deviation | to | $20 \mu \mathrm{~m}$ |  | $0.4 \mu \mathrm{~m}$ |  |
| Straightness deviation | to | $20 \mu \mathrm{~m}$ |  | $1.0 \mu \mathrm{~m}$ |  |
| Parallelism deviation | to | $20 \mu \mathrm{~m}$ |  | $2.0 \mu \mathrm{~m}$ |  |
| Ring gauges * Diameter | 3 mm to | 200 mm |  | $0.8 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ |  |
| Roundness deviation | to | $20 \mu \mathrm{~m}$ |  | $0.4 \mu \mathrm{~m}$ |  |
| Straightness deviation | to | $20 \mu \mathrm{~m}$ |  | $1.0 \mu \mathrm{~m}$ |  |
| Parallelism deviation | to | $20 \mu \mathrm{~m}$ |  | $2.0 \mu \mathrm{~m}$ |  |
| Measuring pins, pins for screw threads * Diameter | 0.1 mm to | 20 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.2:2007 } \end{aligned}$ | $0.8 \mu \mathrm{~m}$ |  |
| Roundness deviation | to | $20 \mu \mathrm{~m}$ |  | $0.4 \mu \mathrm{~m}$ | starting at 1 mm diameter |
| Straightness deviation | to | $20 \mu \mathrm{~m}$ |  | $1.0 \mu \mathrm{~m}$ | starting at 1.5 mm diameterr |
| Parallelism deviation | to | $20 \mu \mathrm{~m}$ |  | $2.0 \mu \mathrm{~m}$ | starting at 1.5 mm diameter |
| Thread gauges * single-start cylindrical external and internal threads with straight flanks, symmetrical profile and nominal thread angle $60^{\circ}$ |  |  |  |  |  |
| External thread with nominal lead 0.25 mm to 5.5 mm Simple pitch diameter | 2 mm to | 100 mm | VDI/VDE/DGQ 2618 <br> Part 4.8:2006 <br> Option 1 | $2.8 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured pitch diameter |
| Internal thread with nominal lead 0.5 mm to 6 mm Simple pitch diameter | 4 mm to | 100 mm | VDI/VDE/DGQ 2618 <br> Part 4.9:2006 <br> Option 1 | $2.8 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-site Calibration - Ruhla

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Coordinate measuring technology <br> Measuring projectors Measuring microscopes * | 0 mm to 250 mm | DKD-R 4-3 <br> Part 18.1:2018 <br> Calibration of metrological characteristics of coordinate measuring machines (CMM) according to DIN EN ISO 10360 and VDI/VDE 2617 |  | Visual probing with crosshair$l=\text { measured length }$ |
|  |  | Determination of probing error $P S-1 D(O T)$ with a graduated scale made of glass according to VDI/VDE 2617 Part 6.1:2021 | $0.3 \mu \mathrm{~m}$ |  |
|  |  | Determination of length measurement error $E-1 D(O T)$ with a graduated scale made of glass according to VDI/VDE 2617 <br> Part 6.1: 2021 | $0.8 \mu \mathrm{~m}+0.6 \cdot 10^{-6} \cdot l$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Nürnberg

Permanent Laboratory - Nürnberg

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Length <br> Gauge blocks * <br> made of steel according to DIN EN ISO 3650:1999 | 0.5 mm to 100 mm | VDI/VDE/DGQ 2618 <br> Part 3.1:2004 <br> in the nominal values of the references <br> Measurement of the deviation of the central length $l_{c}$ from the nominal value $l_{\mathrm{n}}$ by comparison measurement Measurement of the deviations $f_{0}$ and $f_{\mathrm{u}}$ from the central length by 5 points comparison measurement | For the central length: $0.08 \mu \mathrm{~m}+0.8 \cdot 10^{-6} \cdot l$ <br> For the deviations $f_{0}$ and $f_{\mathrm{u}}$ from the central length: $0.08 \mu \mathrm{~m}$ | $l=$ gauge block length <br> Measuring surface quality as stated in QMH rsp. in the test specifications <br> For the smallest measurement uncertainties, the wringability and the wringing characteristics of both measuring surfaces must be checked using an appropriate optical flat. |
| Gauge blocks * made of ceramics according to DIN EN ISO 3650:1999 | 0.5 mm to 100 mm |  | For the central length: $0.1 \mu \mathrm{~m}+0.9 \cdot 10^{-6} \cdot l$ <br> For the deviations $f_{0}$ and $f_{\mathrm{u}}$ from the central length: $0.07 \mu \mathrm{~m}$ |  |
| Gauge blocks * made of tungsten carbide according to DIN EN ISO 3650:1999 | 0.5 mm to 100 mm |  | For the central length: $0.1 \mu \mathrm{~m}+0.9 \cdot 10^{-6} \cdot l$ <br> For the deviations $f_{0}$ and $f_{\mathrm{u}}$ from the central length: $0.07 \mu \mathrm{~m}$ |  |
| Gauge blocks * made of steel according to DIN EN ISO 3650:1999 | > 100 mm to 1000 mm | $\text { VDI/VDE/DGQ } 2618$ <br> Part 3.1:2004 <br> in nominal lengths, that deviate up to 50 mm from the length of the standards Measurement of the deviation of the central length $l_{c}$ from the nominal value $l_{\mathrm{n}}$ by comparison measurement | For the central length: $0.2 \mu \mathrm{~m}+0.7 \cdot 10^{-6} \cdot l$ | $l=$ gauge block length |

Valid from: $\quad 10.01 .2024$
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Nürnberg

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Cylindrical setting gauges * <br> Ring gauges <br> Diameter | 2 mm to 200 mm |  | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 4.1:2006 } \end{aligned}$ | $0.6 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Roundness deviation | to | $20 \mu \mathrm{~m}$ |  | $0.1 \mu \mathrm{~m}$ | starting at 2 mm diameter |
| Straightness and parallelism deviation | to | $20 \mu \mathrm{~m}$ |  | $1 \mu \mathrm{~m}$ | starting at 3 mm diameter |
| Plug gauges Diameter | 1 mm to | 200 mm |  | $0.6 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Roundness deviation | to | $20 \mu \mathrm{~m}$ |  | $0.1 \mu \mathrm{~m}$ | starting at 1 mm diameter |
| Straightness and parallelism deviation | to | $20 \mu \mathrm{~m}$ |  | $1 \mu \mathrm{~m}$ | starting 1.5 mm diameter |
| Measuring pins, pins for screw theads Diameter | 0.1 mm to | 20 mm | VDI/VDE/DGQ 2618 <br> Part 4.2:2007 | $0.6 \mu \mathrm{~m}$ |  |
| Roundness deviation | to | $20 \mu \mathrm{~m}$ |  | $0.1 \mu \mathrm{~m}$ | starting at 1 mm diameter |
| Straightness and parallelism deviation | to | $20 \mu \mathrm{~m}$ |  | $1 \mu \mathrm{~m}$ | starting at 1.5 mm diameter |
| Reference gauges for micrometers * | 25 mm to | 1000 mm | VDI/VDE/DGQ 2618 <br> Part 4.4:2009 | $0.7 \mu \mathrm{~m}+1.5 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Gap gauges* | 5 mm to | 160 mm | VDI/VDE/DGQ 2618 <br> Part 4.7:2005 | $2 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Feeler gauges | 0.01 mm to | 2 mm | Trescal KA29 08.1/2021 | $3 \mu \mathrm{~m}$ |  |
| Calipers for external, internal and depth dimensions* | 0 mm to | 500 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.1:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
|  | $>500 \mathrm{~mm}$ to | 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Depth calipers* | 0 mm to | 500 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.2:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
|  | $>500 \mathrm{~mm}$ to | 1000 mm |  | $50 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Height calipers* | 0 mm to | 1000 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 9.3:2006 } \end{aligned}$ | $30 \mu \mathrm{~m}+30 \cdot 10^{-6} \cdot l$ |  |
| Micrometers * | 0 mm to | 300 mm | VDI/VDE/DGQ 2618 <br> Part 10.1:2001 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length $300 \mathrm{~mm}=$ final value of the measuring range |
|  | > 300 mm to | 600 mm |  | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $600 \mathrm{~mm}=$ final value of the measuring range |
| Micrometers for screw thread measurements form D18 * | 0 mm to | 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.2:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length $300 \mathrm{~mm}=$ final value of the measuring range |
| Micrometers with dial indicator form D13 * | 0 mm to | 300 mm | VDI/VDE/DGQ 2618 <br> Part 10.3:2002 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Nürnberg

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Micrometer heads * | 0 mm to 50 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.4:2008 } \end{aligned}$ | $3 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot l$ | $50 \mathrm{~mm}=$ final value of the measuring range |
| Depth micrometers with extensions * | 0 mm to 300 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.5:2010 } \end{aligned}$ | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $300 \mathrm{~mm}=$ final value of the measuring range; Measuring element generally 25 mm range |
| Internal micrometers with two-point contact * | 25 mm to 1000 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.7:2010 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ |  |
| Internal micrometers with three-point contact * | 3 mm to 200 mm | $\begin{aligned} & \text { VDI/VDE/DGQ } 2618 \\ & \text { Part 10.8:2002 } \end{aligned}$ | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Internal micrometers with jaws | 5 mm to 200 mm | Trescal KA16-6 01.1/2016 | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | 200 mm = final value of the measuring range |
| Internal groove micrometers | 0 mm to 100 mm | Trescal KA16-7 01.1/2016 | $5 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $100 \mathrm{~mm}=$ final value of the measuring range |
| Mechanical dial gauges* | to 100 mm | VDI/VDE/DGQ/DKD 2618 Part 11.1:2021 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | Vertically measured |
| Dial indicators* | to $\quad 3 \mathrm{~mm}$ | VDI/VDE/DGQ 2618 <br> Part 11.2:2002 | $0.7 \mu \mathrm{~m}$ |  |
| Lever gauges * | to 3.2 mm | VDI/VDE/DGQ 2618 Part 11.3:2002 | $0.9 \mu \mathrm{~m}$ |  |
| Digital indicator gauges * | to 100 mm | VDI/VDE/DGQ/DKD 2618 <br> Part 11.4:2020 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | Vertically measured |
| Lever gauges for external measurements (quick tests) * | 0 mm to 200 mm | VDI/VDE/DGQ 2618 Part 12.1:2005 | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Lever gauges for internal measurements (quick tests) * | 2.5 mm to 200 mm | VDI/VDE/DGQ 2618 <br> Part 13.1:2005 | $7 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot l$ | $l=$ measured length |
| Thread gauges * (single- and multi-start cylindrical external and internal threads with straight flanks, symmetrical profile) |  |  |  |  |
| Pitch diameter on external thread | 1 mm to 200 mm Lead $\geq 0.25 \mathrm{~mm}$ | VDI/VDE/DGQ 2618 <br> Part 4.8:2006 Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter simple pitch diameter |
| Pitch diameter on internal thread | 3 mm to 200 mm Lead $\geq 0.5 \mathrm{~mm}$ to 6 mm | VDI/VDE/DGQ 2618 <br> Part 4.9:2006 Option 1 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Annex to the Partial Accreditation Certificate D-K-15015-01-01

| Permanent Laboratory - Nürnberg |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Thread gauges * (single-and multi-start cylindrical external and internal threads with straight flanks, symmetrical and unsymmetrical profile) |  |  |  |  |
| External thread Pitch diameter | 1 mm to 150 mm Nominal diameter: | $\text { VDI/VDE/DGQ } 2618$ <br> Part 4.8:2006 <br> Option 1 to 4 <br> Scanning method | $3 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter |
| Outside diameter, core diameter |  |  | $3 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ outside/core diameter |
| Lead or pitch | 0.25 mm to 8 mm |  | $1 \mu \mathrm{~m}$ |  |
| Thread angle $\alpha$ | $\geq 27^{\circ}$ | (Specifying the thread angle $\alpha$ ) | (1.2 + $\left.3 \mathrm{~mm} / l_{\mathrm{F}}\right)^{\prime}$, but not lower than 6 ' | $l_{\mathrm{F}}=$ flank length |
| Internal thread Pitch diameter | 2.5 mm to 160 mm Nominal diameter: | VDI/VDE/DGQ 2618 <br> Part 4.9:2006 <br> Option 1 to 4 <br> Scanning method | $3 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ pitch diameter |
| Outside diameter, core diameter |  |  | $3 \mu \mathrm{~m}+5 \cdot 10^{-6} \cdot d$ | $d=$ outside/ core diameter |
| Lead or pitch | 0.25 mm to 8 mm |  | $1 \mu \mathrm{~m}$ |  |
| Thread angle $\alpha$ | $\geq 27^{\circ}$ | (Specifying the thread angle $\alpha)$ | $\left(1.2+3 \mathrm{~mm} / l_{\mathrm{F}}\right)^{\prime}$, but not lower than 6 ' | $l_{\mathrm{F}}=$ flank length |
| DC and low frequency <br> DC voltage <br> Measurement instruments | $\begin{array}{r} 0 \mathrm{mV} \text { to }<330 \mathrm{mV} \\ 0.33 \mathrm{~V} \text { to } \\ 3.3 \mathrm{~V} \text { to } \\ 33 \mathrm{~V} \text { to } \\ 33 \mathrm{~V} \\ 330 \mathrm{~V} \end{array} \text { to } 1020 \mathrm{~V} .$ |  | $30 \cdot 10^{-6} \cdot U+5.0 \mu \mathrm{~V}$ <br> $30 \cdot 10^{-6} \cdot U+20 \mu \mathrm{~V}$ <br> $30 \cdot 10^{-6} \cdot U+0.20 \mathrm{mV}$ <br> $30 \cdot 10^{-6} \cdot U+2.0 \mathrm{mV}$ <br> $30 \cdot 10^{-6} \cdot U+5.0 \mathrm{mV}$ | $U=$ measured value |
| DC voltage Sources | 1 mV to 200 mV <br> $>0.2 \mathrm{~V}$ to 2 V <br> $>2 \mathrm{~V}$ to 20 V  <br> $>20 \mathrm{~V}$ to 200 V  <br> $>200 \mathrm{~V}$ to 1000 V  |  | $\begin{aligned} & 15 \cdot 10^{-6} \cdot U+3.0 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+4.0 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+20 \mu \mathrm{~V} \\ & 15 \cdot 10^{-6} \cdot U+0.23 \mathrm{mV} \\ & 15 \cdot 10^{-6} \cdot U+1.2 \mathrm{mV} \end{aligned}$ |  |
| DC current Measurement instruments |  |  | $0.20 \cdot 10^{-3} \cdot I+0.15 \mu \mathrm{~A}$ $0.15 \cdot 10^{-3} \cdot I+0.20 \mu \mathrm{~A}$ $0.15 \cdot 10^{-3} \cdot I+1.0 \mu \mathrm{~A}$ $0.15 \cdot 10^{-3} \cdot I+20 \mu \mathrm{~A}$ $0.30 \cdot 10^{-3} \cdot I+0.10 \mathrm{~mA}$ $0.60 \cdot 10^{-3} \cdot I+0.10 \mathrm{~mA}$ $0.70 \cdot 10^{-3} \cdot I+1.0 \mathrm{~mA}$ $1.5 \cdot 10^{-3} \cdot I+2.0 \mathrm{~mA}$ | $I=$ measured value |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Nürnberg

| Measurement quantity / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| DC current Sources | $1 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ <br> $>0.2 \mathrm{~mA}$ to 2 mA <br> $>2 \mathrm{~mA}$ to 20 mA <br> $>20 \mathrm{~mA}$ to 200 mA <br> $>0.2 \mathrm{~A}$ to 2 A <br> $>2 \mathrm{~A}$ to 20 A |  | $\begin{gathered} 20 \cdot 10^{-6} \cdot I+2.0 \mathrm{nA} \\ 20 \cdot 10^{-6} \cdot I+20 \mathrm{nA} \\ 20 \cdot 10^{-6} \cdot I+0.20 \mu \mathrm{~A} \\ 70 \cdot 10^{-6} \cdot I+2.0 \mu \mathrm{~A} \\ 0.30 \cdot 10^{-3} \cdot I+40 \mu \mathrm{~A} \\ 0.70 \cdot 10^{-3} \cdot I+1.0 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| DC resistance Resistors | $1 \Omega$ to $2 \Omega$ <br> $>2 \Omega$ to $20 \Omega$ <br> $>20 \Omega$ to $200 \Omega$ <br> $>0.2 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$ <br> $>2 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ <br> $>20 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$ <br> $>0.2 \mathrm{M} \Omega$ to $2 \mathrm{M} \Omega$ <br> $>2 \mathrm{M} \Omega$ to $20 \mathrm{M} \Omega$ <br> $>20 \mathrm{M} \Omega$ to $200 \mathrm{M} \Omega$  |  | $\begin{aligned} & 30 \cdot 10^{-6} \cdot R+20 \mu \Omega \\ & 20 \cdot 10^{-6} \cdot R+50 \mu \Omega \\ & 20 \cdot 10^{-6} \cdot R+0.50 \mathrm{~m} \Omega \\ & 20 \cdot 10^{-6} \cdot R+5.0 \mathrm{~m} \Omega \\ & 20 \cdot 10^{-6} \cdot R+50 \mathrm{~m} \Omega \\ & 20 \cdot 10^{-6} \cdot R+0.40 \Omega \\ & 20 \cdot 10^{-6} \cdot R+5.0 \Omega \\ & 40 \cdot 10^{-6} \cdot R+0.20 \mathrm{k} \Omega \\ & 0.30 \cdot 10^{-3} \cdot R+0.20 \mathrm{M} \Omega \end{aligned}$ | $R=$ measured value |
| DC resistance Measurement instruments | $1 \Omega$ to$<11 \Omega$ <br> $11 \Omega$ <br> to <br> $33 \Omega$ <br> to$<0.11 \mathrm{k} \Omega$  <br> $0.11 \mathrm{k} \Omega$ to $<0.33 \mathrm{k} \Omega$ <br> $0.33 \mathrm{k} \Omega$ to $<1.1 \mathrm{k} \Omega$ <br> $1.1 \mathrm{k} \Omega$ to $<3.3 \mathrm{k} \Omega$ <br> $3.3 \mathrm{k} \Omega$ to $<11 \mathrm{k} \Omega$ <br> $11 \mathrm{k} \Omega$ to $<33 \mathrm{k} \Omega$ <br> $33 \mathrm{k} \Omega$ to $<0.11 \mathrm{M} \Omega$ <br> $0.11 \mathrm{M} \Omega$ to $<0.33 \mathrm{M} \Omega$ <br> $0.33 \mathrm{M} \Omega$ to $<1.1 \mathrm{M} \Omega$ <br> $1.1 \mathrm{M} \Omega$ to $<3.3 \mathrm{M} \Omega$ <br> $3.3 \mathrm{M} \Omega$ to $<11 \mathrm{M} \Omega$ <br> $11 \mathrm{M} \Omega$ to $<33 \mathrm{M} \Omega$ <br> $33 \mathrm{M} \Omega$ to $<0.11 \mathrm{G} \Omega$ <br> $0.11 \mathrm{G} \Omega$ to $<0.33 \mathrm{G} \Omega$ <br> $0.33 \mathrm{G} \Omega$ to $<1.1 \mathrm{G} \Omega$ |  | $\begin{aligned} & 0.10 \cdot 10^{-3} \cdot R+15 \mathrm{~m} \Omega \\ & 0.10 \cdot 10^{-3} \cdot R+20 \mathrm{~m} \Omega \\ & 0.10 \cdot 10^{-3} \cdot R+20 \mathrm{~m} \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+25 \mathrm{~m} \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+15 \mathrm{~m} \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+0.40 \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+0.10 \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+1.5 \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+1.0 \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+26 \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+20 \Omega \\ & 0.15 \cdot 10^{-3} \cdot R+0.30 \mathrm{k} \Omega \\ & 0.20 \cdot 10^{-3} \cdot R+0.60 \mathrm{k} \Omega \\ & 0.35 \cdot 10^{-3} \cdot R+8.0 \mathrm{k} \Omega \\ & 0.60 \cdot 10^{-3} \cdot R+18 \mathrm{k} \Omega \\ & 3.5 \cdot 10^{-3} \cdot R+0.30 \mathrm{M} \Omega \\ & 20 \cdot 10^{-3} \cdot R+1.4 \mathrm{M} \Omega \end{aligned}$ | $R=$ measured value |
| AC voltage Measurement instruments | 1 mV to $<33 \mathrm{mV}$ | 10 Hz to 45 Hz  <br> $>45 \mathrm{~Hz}$ to 10 kHz  <br> $>10 \mathrm{kHz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz <br> $>100 \mathrm{kHz}$ to 500 kHz | $\begin{gathered} 0.90 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 0.20 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 0.25 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 1.5 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ 4.5 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ 10 \cdot 10^{-3} \cdot U+0.10 \mathrm{mV} \end{gathered}$ | $U=$ measured value |
|  | 33 mV to < 330 mV | 10 Hz to 45 Hz <br> $>45 \mathrm{~Hz}$ to 10 kHz <br> $>10 \mathrm{kHz}$ to 20 kHz <br> $>20 \mathrm{kHz}$ to 50 kHz <br> $>50 \mathrm{kHz}$ to 100 kHz <br> $>100 \mathrm{kHz}$ to 500 kHz | $\begin{aligned} & 0.40 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 0.20 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 0.20 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 0.50 \cdot 10^{-3} \cdot U+30 \mu \mathrm{~V} \\ & 1.0 \cdot 10^{-3} \cdot U+80 \mu \mathrm{~V} \\ & 2.5 \cdot 10^{-3} \cdot U+0.20 \mathrm{mV} \end{aligned}$ |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Permanent Laboratory - Nürnberg

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement <br> / Proced | nditions re | Expanded measurement of uncertainty | Remarks |
| AC voltage Measurement instruments | 0.33 V to <3.3V | $\begin{array}{r} 10 \mathrm{~Hz} \text { to } \\ >45 \mathrm{~Hz} \text { to } \\ >10 \mathrm{kHz} \text { to } \\ >20 \mathrm{kHz} \text { to } \\ >50 \mathrm{kHz} \text { to } \\ >100 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 45 \mathrm{~Hz} \\ 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \\ 500 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.40 \cdot 10^{-3} \cdot U+0.10 \mathrm{mV} \\ 0.20 \cdot 10^{-3} \cdot U+0.10 \mathrm{mV} \\ 0.25 \cdot 10^{-3} \cdot U+0.10 \mathrm{mV} \\ 0.40 \cdot 10^{-3} \cdot U+0.10 \mathrm{mV} \\ 1.0 \cdot 10^{-3} \cdot U+0.20 \mathrm{mV} \\ 3.0 \cdot 10^{-3} \cdot U+2.0 \mathrm{mV} \end{gathered}$ | $U=$ measured value |
|  | 3.3 V to $<33 \mathrm{~V}$ | $\begin{aligned} 10 \mathrm{~Hz} & \text { to } \\ >45 \mathrm{~Hz} & \text { to } \\ > & 10 \mathrm{kHz} \end{aligned} \text { to }$ | $\begin{array}{r} 45 \mathrm{~Hz} \\ 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.40 \cdot 10^{-3} \cdot U+1.5 \mathrm{mV} \\ 0.20 \cdot 10^{-3} \cdot U+1.0 \mathrm{mV} \\ 0.30 \cdot 10^{-3} \cdot U+1.0 \mathrm{mV} \\ 0.50 \cdot 10^{-3} \cdot U+1.0 \mathrm{mV} \\ 1.5 \cdot 10^{-3} \cdot U+2.5 \mathrm{mV} \end{array}$ |  |
|  | 33 V to < 330 V | $\begin{aligned} 45 \mathrm{~Hz} & \text { to } \\ >1 \mathrm{kHz} & \text { to } \\ > & 10 \mathrm{kHz} \end{aligned} \text { to }$ | $\begin{array}{r} 1 \mathrm{kHz} \\ 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \\ 50 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 0.25 \cdot 10^{-3} \cdot U+3.0 \mathrm{mV} \\ 0.30 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 0.30 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 0.40 \cdot 10^{-3} \cdot U+10 \mathrm{mV} \\ 2.5 \cdot 10^{-3} \cdot U+60 \mathrm{mV} \end{array}$ |  |
|  | 330 V to 1020 V | $\begin{aligned} & 45 \mathrm{~Hz} \\ > & \text { to } \\ > & 5 \mathrm{kHz} \end{aligned} \text { to }$ | $\begin{array}{r} 1 \mathrm{kHz} \\ 5 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.40 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \\ & 0.30 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \\ & 0.40 \cdot 10^{-3} \cdot U+20 \mathrm{mV} \end{aligned}$ |  |
| AC voltage Sources | 0.1 V to 0.2 V | $\begin{aligned} 40 \mathrm{~Hz} & \text { to } \\ >100 \mathrm{~Hz} & \text { to } \\ >2 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 100 \mathrm{~Hz} \\ 2 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.20 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ & 0.20 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \\ & 0.20 \cdot 10^{-3} \cdot U+20 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>0.2 \mathrm{~V}$ to 2 V | $\begin{aligned} 40 \mathrm{~Hz} & \text { to } \\ >100 \mathrm{~Hz} & \text { to } \\ >2 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 100 \mathrm{~Hz} \\ 2 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.20 \cdot 10^{-3} \cdot U+60 \mu \mathrm{~V} \\ & 0.20 \cdot 10^{-3} \cdot U+60 \mu \mathrm{~V} \\ & 0.20 \cdot 10^{-3} \cdot U+60 \mu \mathrm{~V} \end{aligned}$ |  |
|  | $>2 \mathrm{~V}$ to 20 V | $\begin{array}{r} 40 \mathrm{~Hz} \text { to } \\ >100 \mathrm{~Hz} \text { to } \\ >2 \mathrm{kHz} \end{array}$ | $\begin{array}{r} 100 \mathrm{~Hz} \\ 2 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.20 \cdot 10^{-3} \cdot U+0.60 \mathrm{mV} \\ & 0.20 \cdot 10^{-3} \cdot U+0.60 \mathrm{mV} \\ & 0.20 \cdot 10^{-3} \cdot U+0.60 \mathrm{mV} \end{aligned}$ |  |
|  | $>20 \mathrm{~V}$ to 200 V | $\begin{aligned} 40 \mathrm{~Hz} & \text { to } \\ >100 \mathrm{~Hz} & \text { to } \\ >2 \mathrm{kHz} & \text { to } \end{aligned}$ | $\begin{array}{r} 100 \mathrm{~Hz} \\ 2 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 0.20 \cdot 10^{-3} \cdot U+6.0 \mathrm{mV} \\ & 0.20 \cdot 10^{-3} \cdot U+6.0 \mathrm{mV} \\ & 0.20 \cdot 10^{-3} \cdot U+6.0 \mathrm{mV} \end{aligned}$ |  |
|  | $>200 \mathrm{~V}$ to 1050 V | 40 Hz to | 10 kHz | $0.40 \cdot 10^{-3} \cdot U+80 \mathrm{mV}$ |  |
| AC current Measurement instruments | $29 \mu \mathrm{~A}$ to $<330 \mu \mathrm{~A}$ <br> 0.33 mA to $<3.3 \mathrm{~mA}$ <br> 3.3 mA to $<33 \mathrm{~mA}$ <br> 33 mA to $<330 \mathrm{~mA}$ <br> 0.33 A to $<1.1 \mathrm{~A}$ <br> 1.1 A to $<3 \mathrm{~A}$ <br> 3 A to $<11 \mathrm{~A}$ <br> 11 A to 20.5 A | 45 Hz to | 1 kHz | $\begin{gathered} \hline 1.6 \cdot 10^{-3} \cdot I+0.40 \mu \mathrm{~A} \\ 1.5 \cdot 10^{-3} \cdot I+0.60 \mu \mathrm{~A} \\ 0.50 \cdot 10^{-3} \cdot I+6.0 \mu \mathrm{~A} \\ 0.50 \cdot 10^{-3} \cdot I+60 \mu \mathrm{~A} \\ 0.60 \cdot 10^{-3} \cdot I+0.30 \mathrm{~mA} \\ 0.70 \cdot 10^{-3} \cdot I+0.40 \mathrm{~mA} \\ 1.5 \cdot 10^{-3} \cdot I+5.0 \mathrm{~mA} \\ 2.0 \cdot 10^{-3} \cdot I+10 \mathrm{~mA} \end{gathered}$ | $I=$ measured value |
| AC current Sources | 0.2 mA to 2 mA <br> $>2 \mathrm{~mA}$ to 20 mA <br> $>20 \mathrm{~mA}$ to 200 mA <br> $>200 \mathrm{~mA}$ to 2 A <br> $>2 \mathrm{~A}$ to 20 A | 45 Hz to | 1 kHz | $\begin{gathered} 0.50 \cdot 10^{-3} \cdot I+0.60 \mu \mathrm{~A} \\ 0.50 \cdot 10^{-3} \cdot I+5.0 \mu \mathrm{~A} \\ 0.50 \cdot 10^{-3} \cdot I+50 \mu \mathrm{~A} \\ 0.80 \cdot 10^{-3} \cdot I+0.50 \mathrm{~mA} \\ 1.1 \cdot 10^{-3} \cdot I+5.0 \mathrm{~mA} \end{gathered}$ |  |

Valid from: $\quad$ 10.01.2024
Date of issue:
10.01.2024

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Abbreviations used:

| CMC | Calibration and measurement capabilities |
| :--- | :--- |
| DGQ | Deutsche Gesellschaft für Qualität e.V. |
| DIN | Deutsches Institut für Normung e.V. |
| DKD | Deutscher Kalibrierdienst |
| DKD-R | Guideline of Deutscher Kalibrierdienst, <br> published by Physikalisch-Technischen Bundesanstalt |
| Trescal KA | Calibration guide of Trescal GmbH |
| VDE | Verband der Elektrotechnik, Elektronik und Informationstechnik e.V. |
| VDI | Verein Deutscher Ingenieure e.V. |

[^4]Date of issue: $\quad 10.01 .2024$
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Accreditation

The Deutsche Akkreditierungsstelle attests with this Partial Accreditation Certificate that the calibration laboratory

## Trescal GmbH

Borsigstraße 11, 64291 Darmstadt
meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the calibration laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and they conform to the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) $765 / 2008$, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This partial accreditation certificate only applies in connection with the notice of 10.01.2024 with accreditation number D-K-15015-01.
It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 21 pages.

Registration number of the partial accreditation certificate: D-K-15015-01-02
It is a part of the accreditation certificate: D-K-15015-01-00.


## Deutsche Akkreditierungsstelle GmbH

Office Berlin
Spittelmarkt 10
10117 Berlin

Office Frankfurt am Main
Europa-Allee 52
60327 Frankfurt am Main

Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:
EA: www.european-accreditation.org
ILAC: www.ilac.org
IAF: www.iaf.nu

## DAkkS

Deutsche
Akkreditierungsstelle

## Deutsche Akkreditierungsstelle

## Annex to the Partial Accreditation Certificate D-K-15015-01-02 according to DIN EN ISO/IEC 17025:2018

| Valid from: | $\mathbf{1 0 . 0 1 . 2 0 2 4}$ |
| :--- | :--- |
| Date of issue: | 10.01 .2024 |

This annex is a part of the accreditation certificate D-K-15015-01-00.

Holder of partial accreditation certificate:
Trescal GmbH
Borsigstraße 11, 64291 Darmstadt
with the locations

## Trescal GmbH

Borsigstraße 11, 64291 Darmstadt
Trescal GmbH
Niederlassung Neustadt
Ernst-Abbe-Straße 18, 01844 Neustadt

Trescal GmbH
Niederlassung Esslingen
Limburgstraße 6, 73734 Esslingen
Trescal GmbH
Niederlassung Halver
Oststraße 7, 58553 Halver

Trescal GmbH<br>Niederlassung Braunschweig

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

# Weinbergweg 36, 38106 Braunschweig <br> Trescal GmbH <br> Niederlassung Wetzlar <br> Friedenstraße 26, 35578 Wetzlar 

## Trescal GmbH

Niederlassung Ruhla
Bahnhofstraße 25, 99842 Ruhla

Trescal GmbH<br>Niederlassung Nürnberg<br>Poststraße 15a, 90471 Nürnberg

The calibration laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The calibration laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of calibration laboratories and they conform to the general principles of DIN EN ISO 9001.

Calibration in the fields:

Thermodynamic quantities
Temperature quantities

- Temperature indicators and simulators ${ }^{\text {a) }}$
- Direct reading thermometers ${ }^{\text {a) }}$
- Resistance thermometers ${ }^{\text {a) }}$
- Thermocouples ${ }^{\text {a) }}$
- Temperature transmitters, data loggers
- Temperature block calibrators
- Climatic chambers (temperature) ${ }^{\text {b) }}$

Humidity quantities

- Devices for relative humidity
- Climatic chambers (humidity) ${ }^{\text {b) }}$

Mechanical quantities

- Force ${ }^{\text {a) }}$
- Pressure ${ }^{\text {a) }}$
- Acceleration
- Torque ${ }^{\text {a) }}$
- Weighing instruments ${ }^{\text {a) }}$

Material testing machines (MTM)

- Hardness (MTM) ${ }^{\text {a) }}$
- Force (MTM) ${ }^{\text {b }}$
- Extension (MTM) ${ }^{\text {b) }}$
- Velocity (MTM) ${ }^{\text {b) }}$
- Mechanical work (MTM) ${ }^{\text {b) }}$


## Acoustical quantities

a) also as On-site Calibration
${ }^{\text {b) }}$ only as On-Site Calibration

Within the measurands/calibration items marked with *, the calibration laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use calibration standards or equivalent calibration procedures listed here with different issue dates.
The calibration laboratory maintains a current list of all calibration standards / equivalent calibration procedures within the flexible scope of accreditation.

## Darmstadt

## Permanent Laboratory - Darmstadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Temperature quantities |  |  |  |  |
| Temperature indicators for thermocouples * | $>-100{ }^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 <br> with internal reference junction | 0.25 K | Characteristic curve according to DIN EN 60584-4:2014 |
| Type K and Type N | $>120^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ |  | 0.35 K |  |
|  | $>1000{ }^{\circ} \mathrm{C}$ to $1370{ }^{\circ} \mathrm{C}$ |  | 0.5 K |  |
| Type J | $-210{ }^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$ |  | 0.35 K |  |
|  | $>-100^{\circ} \mathrm{C}$ to $760{ }^{\circ} \mathrm{C}$ |  | 0.25 K |  |
|  | $>760{ }^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ |  | 0.3 K |  |

## On-Site Calibration - Darmstadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Temperature quantities |  |  |  |  |
| Temperature indicators for thermocouples * | $-200{ }^{\circ} \mathrm{C}$ to $-100{ }^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 <br> with internal reference junction | 0.4 K | Characteristic curve according to DIN EN 60584-4:2014 |
|  | $>-100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ |  | 0.25 K |  |
| Type K and Type N | $>120^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ |  | 0.35 K |  |
|  | $>1000{ }^{\circ} \mathrm{C}$ to $1370{ }^{\circ} \mathrm{C}$ |  | 0.5 K |  |
| Type J | $-210^{\circ} \mathrm{C}$ to $-100{ }^{\circ} \mathrm{C}$ |  | 0.35 K |  |
|  | $>-100^{\circ} \mathrm{C}$ to $760{ }^{\circ} \mathrm{C}$ |  | 0.25 K |  |
|  | $>760{ }^{\circ} \mathrm{C}$ to $1200{ }^{\circ} \mathrm{C}$ |  | 0.3 K |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Neustadt

Permanent Laboratory - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Hardness (MTM) * <br> for hardness scale <br> Shore A | 0 Shore to 100 Shore | DIN ISO 48-9:2021 | 1 Shore | direct measurement with reference standards for distance and force |
| Measuring range | 0 mm to 2.5 mm |  | $2 \mu \mathrm{~m}$ |  |
| Elastic force | 0 mN to 8050 mN |  | 2 mN |  |
| Bore diameter of pressure plate $d_{1}$ | 2.9 mm to 3.1 mm |  | $5 \mu \mathrm{~m}$ |  |
| Shaft diameter of indenter $d_{2}$ | 1.1 mm to 1.4 mm |  | $5 \mu \mathrm{~m}$ |  |
| Upper truncated diameter of truncated cone $d_{3}$ | 0.78 mm to 0.8 mm |  | $3 \mu \mathrm{~m}$ |  |
| Diameter of pressure plate $D$ | 17.5 mm to 18.5 mm |  | $10 \mu \mathrm{~m}$ |  |
| Taper angle of indenter $\alpha$ | $34^{\circ} 45^{\prime}$ to $35^{\circ} 15^{\prime}$ |  | 4' |  |
| Shore D | 10 Shore to 100 Shore |  | 1 Shore |  |
| Measuring range | 0 mm to 2.5 mm |  | $2 \mu \mathrm{~m}$ |  |
| Elastic force | 0 mN to 44500 mN |  | 3 mN |  |
| Bore diameter of pressure plate $d_{1}$ | 2.9 mm to 3.1 mm |  | $5 \mu \mathrm{~m}$ |  |
| Shaft diameter of indenter $d_{2}$ | 1.1 mm to 1.4 mm |  | $5 \mu \mathrm{~m}$ |  |
| Radius of indenter $r$ | 0.09 mm to 0.11 mm |  | $3 \mu \mathrm{~m}$ |  |
| Diameter of pressure plate $D$ | 17.5 mm to 18.5 mm |  | $10 \mu \mathrm{~m}$ |  |
| Taper angle of indenter $\alpha$ | $29^{\circ} 45^{\prime}$ to $30^{\circ} 15^{\prime}$ |  | 4' |  |
| IRHD - N | 30 IRHD-N to 95 IRHD-N |  | 1 IRHD - N |  |
| Measuring range | 0 mm to 1.8 mm |  | $2 \mu \mathrm{~m}$ |  |
| Bore diameter of pressure plate $d_{1}$ | 5 mm to 7 mm |  | $10 \mu \mathrm{~m}$ |  |
| Ball diameter of indenter $d_{2}$ | 2.49 mm to 2.51 mm |  | $3 \mu \mathrm{~m}$ |  |
| Diameter of pressure plate $D$ | 19 mm to 21 mm |  | $20 \mu \mathrm{~m}$ |  |
| Pre-load of indenter $F_{\mathrm{c}}$ | 0.28 N to 0.32 N |  | 3 mN |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

| Permanent Laboratory - Neustadt |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| IRHD - N |  | DIN ISO 48-9:2021 |  | direct measurement with reference standards for distance and force |
| Total force on indenter $F_{\mathrm{t}}$ | 5.67 N to 5.73 N |  | 3 mN |  |
| Force on pressure plate $F_{\mathrm{f}}$ | 6.8 N to 9.8 N |  | 3 mN |  |
| IRHD - L | 10 IRHD-L to 35 IRHD-L |  | 1 IRHD - L |  |
| Measuring range | 0 mm to 3.2 mm |  | $2 \mu \mathrm{~m}$ |  |
| Bore diameter of pressure plate $d_{1}$ | 9 mm to 11 mm |  | $10 \mu \mathrm{~m}$ |  |
| Ball diameter of indenter $d_{2}$ | 4.99 mm to 5.01 mm |  | $3 \mu \mathrm{~m}$ |  |
| Diameter of pressure plate $D$ | 21 mm to 23 mm |  | $20 \mu \mathrm{~m}$ |  |
| Pre-load on indenter $F_{\text {c }}$ | 0.28 N to 0.32 N |  | 3 mN |  |
| Total force on indenter $F_{\mathrm{t}}$ | 5.67 N to 5.73 N |  | 3 mN |  |
| Force on pressure plate $F_{\mathrm{f}}$ | 6.8 N to 9.8 N |  | 3 mN |  |
| IRHD - M | 30 IRHD-M to 95 IRHD-M |  | 4.5 IRHD - M |  |
| Measuring range | 0 mm to 0.3 mm |  | $2 \mu \mathrm{~m}$ |  |
| Bore diameter of pressure plate $d_{1}$ | 0.85 mm to 1.15 mm |  | $5 \mu \mathrm{~m}$ |  |
| Ball diameter of indenter $d_{2}$ | 0.39 mm to 0.4 mm |  | $3 \mu \mathrm{~m}$ |  |
| Diameter of pressure plate $D$ | 3.2 mm to 3.5 mm |  | $10 \mu \mathrm{~m}$ |  |
| Pre-load on indenter $F_{\text {c }}$ | 7.8 mN to 8.8 mN |  | 0.3 mN |  |
| Total force on indenter $F_{\mathrm{t}}$ | 152.3 mN to 154.3 mN |  | 0.3 mN |  |
| Force on pressure plate $F_{\mathrm{f}}$ | 205 mN to 265 mN |  | 0.3 mN |  |
| Pressure * <br> Absolute pressure $p_{\text {abs }}$ |  | DKD-R 6-1:2014 <br> Method of calibration up to 2 bar: $p_{\mathrm{abs}}=p_{\mathrm{e}}+p_{\mathrm{amb}}$ | 0.15 mbar |  |
|  | 0 bar to 2 bar |  |  | Pressure medium: gas The uncertainty of the barometer has to be taken into account. |
|  | $>2$ bar to 121 bar |  | $6.3 \cdot 10^{-5} \cdot p_{\text {abs }}+0.45 \mathrm{mbar}$ |  |
|  | $\begin{aligned} & 1 \text { bar; to } 61 \text { bar } \\ & 2 \text { bar } \end{aligned}$ | DKD-R 6-1:2014 <br> Method of calibration: $p_{\mathrm{abs}}=p_{\mathrm{e}}+p_{\mathrm{amb}}$ | $6.8 \cdot 10^{-5} \cdot p_{\text {abs }}+0.35 \mathrm{mbar}$ | Pressure medium: oil The uncertainty of the barometer has to be taken into account. |
|  | > 61 bar to 1201 bar |  | $9.7 \cdot 10^{-5} \cdot p_{\text {abs }}+5.8$ mbar |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

| Permanent Laboratory - Neustadt |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity / Calibration item | Range | Measurement conditions <br> / Procedure | Expanded measurement of uncertainty | Remarks |
| Negative and positive gauge pressure $p_{\text {e }}$ | -1 bar to 1 bar | DKD-R 6-1:2014 | 0.11 mbar | Pressure medium: gas |
|  | $>1$ bar to 120 bar |  | $6.3 \cdot 10^{-5} \cdot p_{\mathrm{e}}+0.45 \mathrm{mbar}$ |  |
| Positive gauge pressure $p_{\mathrm{e}}$ | >1 bar to 60 bar |  | $6.8 \cdot 10^{-5} \cdot p_{\mathrm{e}}+0.35 \mathrm{mbar}$ | Pressure medium: oil |
|  | > 60 bar to 1200 bar |  | $9.7 \cdot 10^{-5} \cdot p_{\mathrm{e}}+5.8 \mathrm{mbar}$ |  |
| Weighing instruments * <br> Nonautomatic electronic weighing instruments |  | EU RAMET/cg-18/v.4.0:2015 |  |  |
|  | to 600 g |  | $2 \cdot 10^{-6}$ | with weights according to OIML R 111-1:2004, class $\mathrm{E}_{2}$ |
|  | to 180 kg |  | $2 \cdot 10^{-5}$ | with weights according to OIML R 111-1:2004, class $\mathrm{F}_{1}$ |

## On-Site Calibration - Neustadt

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Weighing instruments * |  |  |  |  |
| Non automatic electronic weighing instruments | to 600 g | EURAMET/cg-18/v. 4.0:2015 | $2 \cdot 10^{-6}$ | with weights according to OIML R 111-1:2004, class $\mathrm{E}_{2}$ |
|  | to 180 kg |  | $2 \cdot 10^{-5}$ | with weights according to OIML R 111-1:2004, class $\mathrm{F}_{1}$ |

Valid from: $\quad 10.01 .2024$
Date of issue: 10.01.2024
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Esslingen

## Permanent Laboratory - Esslingen

Calibration and Measurement Capabilities (CMC)

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Pressure * <br> Gauge pressure $p_{\mathrm{e}}$ | 0 bar to 1.6 bar <br> $>1.6 \mathrm{bar}$ to 10 bar <br> $>10 \mathrm{bar}$ to 172 bar <br> $>172 \mathrm{bar}$ to 500 bar | DKD-R 6-1:2014 | $\begin{gathered} 0.18 \mathrm{mbar} \\ 1.8 \mathrm{mbar} \\ 18 \mathrm{mbar} \\ 2 \cdot 10^{-4} \cdot p_{\mathrm{e}} \\ \hline \end{gathered}$ | Pressure medium: gas |
| Absolute pressure $p_{\text {abs }}$ | 1 bar to $\quad 1.6 \mathrm{bar}$ $>1.6 \mathrm{bar}$ to $>10 \mathrm{bar}$ $>10 \mathrm{bar}$ to 172 bar |  | 0.18 mbar <br> 1.8 mbar <br> 18 mbar | Pressure medium: gas The uncertainty of the barometer has to be taken into account. |
| Acceleration | For sinusoidal excitation and narrow-band evaluation methods (sine approximation), the amplitudes of vibration acceleration, vibration velocity and vibration displacement are unambiguously linked to one another by the vibration frequency. This is why vibration velocity sensors and vibration displacement sensors can be calibrated using the measurand acceleration as stated in the table in ranges of velocity and displacement - converted accordingly for the stated frequency ranges. |  |  |  |
| Acceleration * | $0.1 \mathrm{~m} / \mathrm{s}^{2}$ to $10 \mathrm{~m} / \mathrm{s}^{2}$ | DKD-R 3-1: <br> part 3:2020 <br> Sinusoidal excitation <br> 0.4 Hz to 160 Hz | $1 \% / 1.4{ }^{\circ}$ | Sensor weight up to 1 kg <br> Displacement amplitude up to 150 mm pk-pk <br> Calibration result: <br> - complex transfer <br> coefficient <br> (magnitude/phase) |
|  | $10 \mathrm{~m} / \mathrm{s}^{2}$ to $500 \mathrm{~m} / \mathrm{s}^{2}$ | $\begin{array}{rlr}  & 10 \mathrm{~Hz} & \text { to } \\ > & 1 \mathrm{kHz} & \text { to } \\ > & 5 \mathrm{kHz} \\ \text { kHz } & \text { to } & 10 \mathrm{kHz} \end{array}$ | $\begin{gathered} 1 \% / 1^{\circ} \\ 1.5 \% / 1.5^{\circ} \\ 2.5 \% / 2^{\circ} \end{gathered}$ | Sensor weight up to 0.3 kg <br> Displacement amplitude up to 10 mm pk-pk Calibration result: - complex transfer coefficient (magnitude /phase) |
| Measurement Amplifier * <br> Charge amplifier transfer coefficient | $\begin{aligned} & \text { Input charge } \\ & 1 \mathrm{pC} \text { to } 10 \mathrm{nC} \end{aligned}$ | DKD-R 3-2:2019 | $\begin{gathered} 0.5 \% / 0.7^{\circ} \\ 0.4 \% / 0.5^{\circ} \\ 0.4 \% / 1^{\circ} \\ 0.6 \% / 2^{\circ} \\ 1 \% / 5^{\circ} \end{gathered}$ | Complex amplification coefficient (magnitude /phase) |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Permanent Laboratory - Esslingen

| Measurement quantity / Calibration item | Rang |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage and IEPE amplifier transfer coefficient | $0.001 \mathrm{~V} / \mathrm{V}$ to | 1000 V/V | $\begin{array}{rrrr} 0.2 \mathrm{~Hz} & \text { to } & 1 \mathrm{~Hz} \\ >1 \mathrm{~Hz} & \text { to } & 20 \mathrm{kHz} \\ >20 \mathrm{kHz} & \text { to } & 50 \mathrm{kHz} \end{array}$ | $\begin{gathered} 0.4 \% / 0.7^{\circ} \\ 0.3 \% / 0.5^{\circ} \\ 1 \% / 5^{\circ} \end{gathered}$ |  |
| Vibration calibrator * <br> Acceleration amplitude for frequence range of $20 \mathrm{~Hz}-1 \mathrm{kHz}$ | $1 \mathrm{~m} / \mathrm{s}^{2}$ to | $20 \mathrm{~m} / \mathrm{s}^{2}$ | $\begin{gathered} \text { DIN ISO 16063- } \\ 44: 2019 \end{gathered}$ | 1.1 \% | Magnitude |
| Frequency | 20 Hz to | 1 kHz |  | $5 \cdot 10^{-4} \cdot f$, but not less than 0.1 Hz | $f=$ measured frequency |
| Harmonic distortion | 20 Hz to | 1 kHz |  | 10 \% (THD) | THD: Total Harmonic Distortion |
| Torque * <br> Hand torque assembly tools, triggering / indicating | $1 \mathrm{~N} \cdot \mathrm{~m}$ to | $1000 \mathrm{~N} \cdot \mathrm{~m}$ | DIN EN ISO 6789-2:2017 | $1 \cdot 10^{-2}$ |  |
| Force * <br> Force sensors Force measuring devices | 50 N to | 250 kN | DIN EN ISO 376:2011, DKD-R 3-3:2018 | $9 \cdot 10^{-4}$ | Compression and tension force, 50 kN - and 250-kN-K-BNME with reference sensors $500 \mathrm{~N}, 2 \mathrm{kN}, 10 \mathrm{kN}$, 50 kN, 250 kN |
| Hand force measuring devices | 50 N to | 1000 N | DKD-R 3-3:2018 <br> Method C | 0.5 \% | Compression and tension force, $50-\mathrm{kN}$ and $250-\mathrm{kN}-\mathrm{K}-\mathrm{BNME}$ with reference force sensors $500 \mathrm{~N}, 2 \mathrm{kN}$ |
| Acoustical quantities* <br> Free field effective sensitivity level of $1 / 4$ " and ½" measuring microphones | $\begin{array}{r} 125 \mathrm{~Hz} \text { to } \\ 250 \mathrm{~Hz} \text { to } \\ >8 \mathrm{kHz} \text { to } \\ >10 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} <250 \mathrm{~Hz} \\ 8 \mathrm{kHz} \\ 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \end{array}$ | DIN EN 61094-8:2013 <br> Substitution method in an anechoic chamber with $1 / 2$ " standard microphone at sound pressure level 74 dB to 94 dB | $\begin{aligned} & 0.35 \mathrm{~dB} \\ & 0.35 \mathrm{~dB} \\ & 0.45 \mathrm{~dB} \\ & 0.50 \mathrm{~dB} \end{aligned}$ |  |
| Free field frequence response of sound calibrators | $\begin{array}{r} 125 \mathrm{~Hz} \text { to } \\ 250 \mathrm{~Hz} \text { to } \\ >8 \mathrm{kHz} \text { to } \\ >10 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} <250 \mathrm{~Hz} \\ 8 \mathrm{kHz} \\ 10 \mathrm{kHz} \\ 20 \mathrm{kHz} \end{array}$ | DIN EN 61672-3:2017 respectively DIN EN 62585:2013 <br> Substitution method in an anechoic chamber with $1 / 2^{\prime \prime}$ standard microphone at sound pressure level 74 dB to 94 dB | $\begin{aligned} & 0.50 \mathrm{~dB} \\ & 0.40 \mathrm{~dB} \\ & 0.50 \mathrm{~dB} \\ & 0.60 \mathrm{~dB} \end{aligned}$ |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

DAkkS
Deutsche
Akkreditierungsstelle

Permanent Laboratory - Esslingen

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Pressure sensitivity level of ½" measuring microphones | $\begin{array}{r} 31.5 \mathrm{~Hz} \text { to } \\ >5 \mathrm{kHz} \text { to } \\ >10 \mathrm{kHz} \text { to } \end{array}$ | $\begin{array}{r} 5 \mathrm{kHz} \\ 10 \mathrm{kHz} \\ 16 \mathrm{kHz} \end{array}$ | DIN EN 61094-5:2016 <br> Comparative measurement in an electro-acoustical coupler | $\begin{aligned} & 0.25 \mathrm{~dB} \\ & 0.40 \mathrm{~dB} \\ & 0.50 \mathrm{~dB} \end{aligned}$ |  |
| Sound pressure level of sound calibrators | 250 Hz; |  | DIN EN IEC 60942:2018 94 dB; 114 dB; 124 dB | 0.15 dB |  |

## On-Site Calibration - Esslingen

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Measurement quantity / <br> Calibration item | Range | Measurement <br> conditions / <br> Procedure | Expanded <br> measurement of <br> uncertainty | Remarks |
| Torque * <br> Hand torque assembly tools, <br> triggering / indicating$\quad 1 \mathrm{~N} \cdot \mathrm{~m}$ to $1000 \mathrm{~N} \cdot \mathrm{~m}$ | DIN EN ISO 6789-2:2017 | $1 \cdot 10^{-2}$ |  |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Halver

Permanent Laboratory - Halver

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Torque * |  |  |  |  |
| Force * <br> Force measuring devices | 10 N to 50 kN | DKD-R 3-3:2018 | 0.24 \% | With force measuring devices in direction of compression and tension |
| Hand force measuring devices | 1 N to 600 N | VDI/VDE 2624 part 2.1:2008 | 0.2 \% | with mass stacks in direction of compression and tension |
|  | 10 N to 5 kN |  | 0.2 \% | With force measuring devices in direction of compression and tension |
| Hardness (MTM) * |  |  |  | $R=$ measured radius <br> $D=$ measured <br> diameter |
| Radius | to $\quad 0.1 \mathrm{~mm}$ | DIN ISO 48-9:2021ASTM D 2240:2015 | $1.5 \cdot 10^{-5} \cdot R+2.6 \mu \mathrm{~m}$ |  |
| Diameter | 0.35 mm to 22 mm |  | $1.5 \cdot 10^{-5} \cdot D+2.6 \mu \mathrm{~m}$ |  |
| Angle | $29^{\circ}$ to $36^{\circ}$ |  | $0.1^{\circ}$ |  |
| Measuring range | 0 mm to 3 mm |  | $0.15 \%$; but not less than $0.5 \mu \mathrm{~m}$ |  |
| Elastic force | 0.55 N to 8.05 N |  | 0.2 \%; but not less than 2 mN |  |
|  | 4.45 N to 44.5 N |  | $0.2 \%$; but not less than 8 mN |  |
| Mass on pressure plate | 0.1 kg to 5 kg |  | 0.2 \%; but not less than 1 g |  |

Valid from: $\quad 10.01 .2024$
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Annex to the Partial Accreditation Certificate D-K-15015-01-02

Deutsche
Akkreditierungsstelle

Permanent Laboratory - Halver

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Temperature quantities * <br> direct reading thermometers with resistance sensor | $-35^{\circ} \mathrm{C}$ to | $150{ }^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 in liquid baths | 0.6 K | Comparison with reference thermometer |
|  | $50^{\circ} \mathrm{C}$ to | $600^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 <br> in dry block calibrator | 3.1 K |  |
| direct reading thermometers with thermocouple sensor | $-35^{\circ} \mathrm{C}$ to | $150{ }^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 in liquid baths | 1.0 K | Comparison with reference thermometer |
|  | $50^{\circ} \mathrm{C}$ to | $600^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 <br> in dry block calibrator | 4.5 K |  |
| Temperature indicators for thermocouples Type J | $-200{ }^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 <br> without internal reference junction | 0.5 K | Characteristic curve according to DIN EN 60584-1:2014 |
| Type K | $-200{ }^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type N | $-200{ }^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type T | $-200{ }^{\circ} \mathrm{C}$ to | $400^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type E | $-200{ }^{\circ} \mathrm{C}$ to | $1000^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type C | $0^{\circ} \mathrm{C}$ to | $1200^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type R | $0^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type S | $0^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type B | $0^{\circ} \mathrm{C}$ to | $1200^{\circ} \mathrm{C}$ |  | 0.6 K |  |

On-Site Calibration - Halver
Calibration and Measurement Capabilities (CMC)

| Measurement quantity <br> / Calibration item | Ran |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Force * <br> Hand force measuring devices | 1 N to | 600 N | VDI/VDE 2624 part 2.1:2008 | 0.2 \% | with mass stacks in direction of compression and tension |
| Extension (MTM) * <br> Extensiometer systems of material testing machines according to DIN 51220:2003 | 0 mm to | 60 mm | DIN EN ISO 9513:2013 <br> ASTM E 83:2016 <br> ASTM E 399:2020 <br> ASTM E 2309/ <br> E 2309M:2020 | $0.15 \%$; but not less than $0.5 \mu \mathrm{~m}$ <br> $0.3 \%$; but not less than $3 \mu \mathrm{~m}$ | Measuring principle: incremental |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

| On-Site Calibration - Ha | Halver |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Identation measuring devices of hardness testing machines | 0 mm to 20 mm | ISO 6506-2:2017 <br> DIN EN ISO 6506-2:2018 <br> ASTM E 10:2018 <br> ISO 6507-2:2018 <br> DIN EN ISO 6507-2:2018 <br> ASTM E 384:2017 <br> ASTM E 92:2017 <br> ISO 6508-02:2015 <br> DIN EN ISO 6508-2:2015 <br> ASTM E 18:2022 <br> DIN EN ISO 2039-1:2003 <br> DIN EN ISO 2039-2:2000 <br> ASTM F 36:2015 <br> ASTM D 785:2008 | $0.15 \%$; but not less than $0.5 \mu \mathrm{~m}$ | Measuring principle: Stage micrometer in reflected light |
| Depth measuring devices of hardness testing machines | 0 mm to 1 mm | DIN EN ISO 6508-2:2015 ASTM E 18:2022 | $0.3 \mu \mathrm{~m}$ | Measuring principle: incremental, DMS |
| Force (MTM) * <br> Force measuring devices of material testing machines | 10 N to 600 kN | ISO 7500-1:2018DIN EN ISO 7500-1:2018DIN EN ISO 7500-1Supplement 1:2022Supplement 2:2022Supplement 3:1999Supplement 4:2013ISO 7500-2:2006DIN EN ISO 7500-2:2007ASTM E 4:2021ISO 6506-2:2017DIN EN ISO 6506-2:2019ASTM E 10:2018ISO 6507-2:2018DIN EN ISO 6507-2:2018ASTM E 384:2017ASTM E 92:2017ISO 6508-2:2015DIN EN ISO 6508-2:2015ASTM E 18:2022DIN EN ISO 2039-1:2003DIN EN ISO 2039-2:2000ASTM F 36:2015ASTM D 785:2008ASTM E 1012:2019ASTM E 467:2021ISO 23788:2012 | 0.12 \% | with force measurement for direction of tension |
|  | 1 N to 1000 kN |  | 0.12 \% | with force measurement for direction of compression |
|  | 0.1 N to 100 N |  | 0.10 \% | with mass stacks in direction of compression and tension |
| Velocity (MTM) * <br> Traverse speed | $0.1 \mathrm{~mm} / \mathrm{min}$ to $20 \mathrm{~mm} / \mathrm{min}$ | ASTM E 2658:2015 | 1.5 \% | Measuring principle: Start/stop method of distance and time |

Valid from: $\quad$ 10.01.2024
Date of issue: $\quad 10.01 .2024$
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## On-Site Calibration - Halver

|  | Calibration and M | surement Ca | (CMC) |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Mechanical work (MTM) * pendulum impact testing machines and impact devices | 0.2 J to 750 J | DIN EN ISO 148-2:2017 DIN 51222:2017 | Force: 0.12 \% <br> Pendulum length: 0.3 mm <br> Angle: $0.05^{\circ}$ <br> Time: 0.2 s | The uncertainty is calculated for: <br> 1. position of the oscillation center <br> 2. potential energy <br> 3. Deviation of the indicated energy <br> 4. Indirect calibration with reference samples |
| Hardness (MTM) * <br> Hardness testing | 60 HBW to 650 HBW | DIN EN ISO 6506-2:2019 ASTM E 10:2018 | 2 \% HBW | The specified values of uncertainty apply to |
| machines according to Brinell, Vickers and Rockwell methods | 100 HV to 1000 HV <br> (Hardness scales HV5 to HV100) <br> (Hardness scales HV0,01 to HV3) | ISO 6507-2:2018 <br> DIN EN ISO 6507-2:2018 <br> ASTM E 384:2017 <br> ASTM E 92:2017 | $\begin{gathered} 1 \% \mathrm{HV}, \\ \text { but not }<1.5 \cdot U_{\mathrm{CRM}} \\ 2 \% \mathrm{HV} \\ \text { but not }<1.5 \cdot U_{\mathrm{CRM}} \end{gathered}$ | indirect calibration with hardness reference plates. <br> Uncertainty of individual parameters |
|  | 20 HRA to 93 HRA | ISO 6508-2:2015 | 0.5 HRA |  |
|  | 20 HRB to 115 HRB | DIN EN ISO 6508-2:2015 | 0.8 HRB | measurement is listed |
|  | 10 HRC to 70 HRC | ASTM E 18:2022 | 0.5 HRC | par |
|  | 70 HR15N to 94 HR15N |  | 0.6 HR15N | $U_{\text {CRM }}=$ Calibration |
|  | 42 HR30N to 86 HR30N |  | 0.6 HR30N | uncertainty of hardness |
|  | 20 HR45N to 77 HR45N |  | 0.6 HR45N | reference plate |
|  | 67 HR15T to 93 HR15T |  | 1.2 HR15T |  |
|  | 29 HR30T to 82 HR30T |  | 1.2 HR30T |  |
|  | 15 HR45T to 72 HR45T |  | 1.2 HR45T |  |
| Temperature quantities * |  |  |  |  |
| Temperature indicators for thermocouples <br> Type J | $-200{ }^{\circ} \mathrm{C}$ to $1200{ }^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 <br> without internal reference junction | 0.5 K | Characteristic curve according to DIN EN 60584-1:2014 |
| Type K | $-200{ }^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type N | $-200{ }^{\circ} \mathrm{C}$ to $1200{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type T | $-200{ }^{\circ} \mathrm{C}$ to $400{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type E | $-200{ }^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type C | $0^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ |  | 0.9 K |  |
| Type R | $0^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type S | $0^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ |  | 0.6 K |  |
| Type B | $0^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ |  | 0.6 K |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Braunschweig

Permanent Laboratory - Braunschweig

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Resistance thermometers, direct reading thermometers and transmitters with resistance sensors | $0.01{ }^{\circ} \mathrm{C}$ | Trescal BS KA20a 01.1/2021 <br> Triple point of water | 15 mK | Calibration at fixed point temperatures |
|  | $29.7646{ }^{\circ} \mathrm{C}$ | Trescal BS KA20b 01.1/2021 <br> Fixed point of gallium | 15 mK |  |
| Resistance thermometers, direct reading thermometers and transmitters with resistance sensors * | $-100^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 <br> in dry block calibrator | 0.25 K | Comparison with reference thermometer |
|  | $>-20^{\circ} \mathrm{C}$ to $140{ }^{\circ} \mathrm{C}$ |  | 0.05 K |  |
|  | $>140^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ |  | 0.2 K |  |
|  | $>300^{\circ} \mathrm{C}$ to $660^{\circ} \mathrm{C}$ |  | 0.7 K |  |
|  | $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 <br> in climatic chamber | 0.4 K |  |
| Direct reading | $-100^{\circ} \mathrm{C}$ to $140{ }^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 | 0.5 K | Comparison with |
| thermometers with base metal | $>140^{\circ} \mathrm{C}$ to $300{ }^{\circ} \mathrm{C}$ | in dry block calibrator | 0.5 K | reference thermometer |
| thermocouple sensors * | $>300^{\circ} \mathrm{C}$ to $660^{\circ} \mathrm{C}$ |  | 0.9 K |  |
|  | $500^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 | 1.6 K |  |
|  | $>900^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$ | in tube furnace | 2.0 K |  |
|  | $>1100^{\circ} \mathrm{C}$ to $1200{ }^{\circ} \mathrm{C}$ |  | 3.0 K |  |
|  | $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 <br> in climatic chamber | 0.5 K |  |
| Base metal | $-100^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 | 1.0 K | Comparison with |
| thermocouples and transmitters with base | $140^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ | in dry block calibrator | 1.0 K | reference thermometer |
| metal thermocouple sensors * | $>300^{\circ} \mathrm{C}$ to $660{ }^{\circ} \mathrm{C}$ |  | 1.4 K |  |
|  | $500{ }^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 | 2.3 K |  |
|  | $>700^{\circ} \mathrm{C}$ to $900{ }^{\circ} \mathrm{C}$ | in tube furnace | 2.4 K |  |
|  | $>900^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$ |  | 2.7 K |  |
|  | $>1100^{\circ} \mathrm{C}$ to $1200{ }^{\circ} \mathrm{C}$ |  | 3.5 K |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

| Permanent Laboratory - Braunschweig |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |  |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Noble metal thermocouples, direct reading thermometers with noble metal thermocouple sensors and transmitters with thermocouple sensors type $S$ and type $R^{*}$ | $200^{\circ} \mathrm{C}$ to | $300^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 <br> in dry block calibrator | 0.5 K | Comparison with reference thermometer |
|  | $>300^{\circ} \mathrm{C}$ to | $660^{\circ} \mathrm{C}$ |  | 0.9 K |  |
|  | $500^{\circ} \mathrm{C}$ to | $700^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 in tube furnace | 1.2 K |  |
|  | $>700^{\circ} \mathrm{C}$ to | $900^{\circ} \mathrm{C}$ |  | 1.3 K |  |
|  | $>900^{\circ} \mathrm{C}$ to | $1100{ }^{\circ} \mathrm{C}$ |  | 1.8 K |  |
|  | $>1100^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ |  | 2.9 K |  |
| Dry block calibrators * | $-100^{\circ} \mathrm{C}$ to | $300^{\circ} \mathrm{C}$ | DKD-R 5-4:2018 | 0.35 K | Comparison with reference thermometer |
|  | $>300^{\circ} \mathrm{C}$ to | $660^{\circ} \mathrm{C}$ |  | 0.65 K |  |
|  | $>660^{\circ} \mathrm{C}$ to | $800^{\circ} \mathrm{C}$ |  | 2.5 K |  |
|  | $>800^{\circ} \mathrm{C}$ to | $1000^{\circ} \mathrm{C}$ |  | 4.0 K |  |
|  | $>1000^{\circ} \mathrm{C}$ to | $1200^{\circ} \mathrm{C}$ |  | 5.0 K |  |
| Thermo-hygrographs | $10^{\circ} \mathrm{C}$ to | $40^{\circ} \mathrm{C}$ | Trescal BS KA24 01.1/2021 <br> in climatic chamber | 1.2 K | Comparison with reference thermometer |
| Humidity quantities <br> Relative humidity Hygrometers for direct logging of relative humidity in air * |  |  | DKD-R 5-8:2019 <br> in climatic chamber temperature range: $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ |  | Comparison with dew point hygrometer <br> Measurement uncertainty expressed as an absolute value of relative humidity |
|  | $20 \%$ to | $50 \%$ |  | 1.5 \% |  |
|  | $>50 \%$ to | 80 \% |  | 2.0 \% |  |
|  | > $80 \%$ to | 90 \% |  | 2.6 \% |  |
|  | 20 \% to | 50 \% | DKD-R 5-8:2019 <br> in humidity generator at $23^{\circ} \mathrm{C}$ | 1.0 \% |  |
|  | > $50 \%$ to | 90 \% |  | 1.5 \% |  |
| Thermo-hygrographs * | 20\% to | 90\% | DKD-R 5-8:2019 <br> in climatic chamber temperature range: $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ | 5.0 \% |  |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

Annex to the Partial Accreditation Certificate D-K-15015-01-02

## On-Site Calibration - Braunschweig

| Calibration and Measurement Capabilities (CMC) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement quantity / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Temperature quantities |  |  |  |  |  |
| Resistance thermometers, direct reading thermometers and transmitters with resistance sensor * | $-100^{\circ} \mathrm{C}$ to | $-20^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 <br> in dry block calibrator | 0.5 K | Comparison with reference thermometer |
|  | $>-20^{\circ} \mathrm{C}$ to | $140^{\circ} \mathrm{C}$ |  | 0.1 K |  |
|  | $>140^{\circ} \mathrm{C}$ to | $300^{\circ} \mathrm{C}$ |  | 0.4 K |  |
|  | $>300^{\circ} \mathrm{C}$ to | $660^{\circ} \mathrm{C}$ |  | 1.4 K |  |
| Direct reading thermometers and transmitters with thermocouple sensors * | $-100{ }^{\circ} \mathrm{C}$ to | $140^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 <br> in dry block calibrator | 1.0 K | Comparison with reference thermometer |
|  | $>140^{\circ} \mathrm{C}$ to | $300{ }^{\circ} \mathrm{C}$ |  | 1.0 K |  |
|  | $>300^{\circ} \mathrm{C}$ to | $660^{\circ} \mathrm{C}$ |  | 1.8 K |  |
| Climatic chamber with air circulation * | $-90^{\circ} \mathrm{C}$ to | $10^{\circ} \mathrm{C}$ | DKD-R 5-7:2018 method A or B | 1.7 K | Comparison with reference thermometer |
|  | $>10^{\circ} \mathrm{C}$ to | $40^{\circ} \mathrm{C}$ |  | 1.0 K |  |
|  | $>40^{\circ} \mathrm{C}$ to | $250^{\circ} \mathrm{C}$ |  | 1.7 K |  |
| Climatic chamber without air circulation * | $-90^{\circ} \mathrm{C}$ to | $10^{\circ} \mathrm{C}$ | DKD-R 5-7:2018 method A or B | 3.0 K | Comparison with reference thermometer |
|  | $>10^{\circ} \mathrm{C}$ to | $40^{\circ} \mathrm{C}$ |  | 2.2 K |  |
|  | $>40^{\circ} \mathrm{C}$ to | $250^{\circ} \mathrm{C}$ |  | 5.0 K |  |
| Measuring locations in climatic chambers with air circulation * | $-90^{\circ} \mathrm{C}$ to | $10^{\circ} \mathrm{C}$ | DKD-R 5-7:2018 method C | 1.7 K | Comparison with reference thermometer |
|  | $>10^{\circ} \mathrm{C}$ to | $40^{\circ} \mathrm{C}$ |  | 1.0 K |  |
|  | $>40^{\circ} \mathrm{C}$ to | $250^{\circ} \mathrm{C}$ |  | 1.7 K |  |
| Measuring locations in climatic chambers without air circulation * | $-90^{\circ} \mathrm{C}$ to | $10^{\circ} \mathrm{C}$ | DKD-R 5-7:2018 method C | 1.7 K | Comparison with reference thermometer |
|  | $>10^{\circ} \mathrm{C}$ to | $40^{\circ} \mathrm{C}$ |  | 1.0 K |  |
|  | $>40^{\circ} \mathrm{C}$ to | $250{ }^{\circ} \mathrm{C}$ |  | 1.7 K |  |
| Humidity quantities <br> Climatic chambers with air circulation * |  |  |  |  | Comparison with capacitive humidity sensor <br> Measurement uncertainty expressed as absolute value of relative humidity |
|  | 20 \% to | 90 \% | DKD-R 5-7:2018 method A or B <br> Air temperature: $10^{\circ} \mathrm{C} \text { to } 20^{\circ} \mathrm{C}$ | 3.5 \% |  |
|  | $10 \%$ to | 90 \% | DKD-R 5-7:2018 method A or B <br> Air temperature: $20^{\circ} \mathrm{C} \text { to } 90^{\circ} \mathrm{C}$ | 3.5 \% |  |
| Measuring locations in climatic chambers with air circulation * | 20 \% to | 90 \% | DKD-R 5-7:2018 <br> method C <br> Air temperature: $10^{\circ} \mathrm{C} \text { to } 20^{\circ} \mathrm{C}$ | 3.5 \% |  |
|  | 10 \% to | 90 \% | DKD-R 5-7:2018 method C <br> Air temperature: $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ | 3.5 \% |  |

Valid from:
Date of issue:
This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## DAkkS

## Wetzlar

Permanent Laboratory - Wetzlar
Calibration and Measurement Capabilities (CMC)

| Measurement quantity <br> / Calibration item | Range |  | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature quantities <br> Resistance thermometers, direct reading thermometers with resistance sensor* | $-50^{\circ} \mathrm{C}$ to | $250{ }^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 in oil baths | 50 mK | Comparison with reference thermometer |
|  | $-80^{\circ} \mathrm{C}$ to | $-45^{\circ} \mathrm{C}$ | DKD-R 5-1:2018 in dry block calibrator | 0.3 K |  |
|  | $>-45^{\circ} \mathrm{C}$ to | $100{ }^{\circ} \mathrm{C}$ |  | 0.1 K |  |
|  | $>100^{\circ} \mathrm{C}$ to | $650{ }^{\circ} \mathrm{C}$ |  | 0.2 K |  |
| Thermocouples, direct reading thermometers with thermocouple sensor * | $-50^{\circ} \mathrm{C}$ to | $250{ }^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 in oil baths | 0.3 K | Comparison with reference thermometer |
|  | $-80^{\circ} \mathrm{C}$ to | $-45^{\circ} \mathrm{C}$ | DKD-R 5-3:2018 <br> in dry block calibrator | 0.5 K |  |
|  | $>-45^{\circ} \mathrm{C}$ to | $100^{\circ} \mathrm{C}$ |  | 0.4 K |  |
|  | $>100^{\circ} \mathrm{C}$ to | $650{ }^{\circ} \mathrm{C}$ |  | 0.5 K |  |
| Temperature indicators for resistance thermometers * | $-200{ }^{\circ} \mathrm{C}$ to | $850{ }^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 | 30 mK | Characteristic curve according to DIN EN 60751:2009 |
| Simulators for resistance thermometers* | $-200{ }^{\circ} \mathrm{C}$ to | $850{ }^{\circ} \mathrm{C}$ |  | 25 mK |  |
| Temperature indicators for thermocouples * <br> Type J, T, E, K, N | $-200{ }^{\circ} \mathrm{C}$ to | $-50{ }^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 <br> without internal reference junction | 0.2 K | Characteristic curve according to DIN EN 60584:2014 |
|  | $>-50^{\circ} \mathrm{C}$ to | $1300{ }^{\circ} \mathrm{C}$ |  | 0.15 K |  |
| Type R, S | $0^{\circ} \mathrm{C}$ to | $100{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
|  | $>100^{\circ} \mathrm{C}$ to | $400{ }^{\circ} \mathrm{C}$ |  | 0.5 K |  |
|  | $>400^{\circ} \mathrm{C}$ to | $1760{ }^{\circ} \mathrm{C}$ |  | 0.3 K |  |
| Type B | $600{ }^{\circ} \mathrm{C}$ to | $700{ }^{\circ} \mathrm{C}$ |  | 0.6 K |  |
|  | $>700^{\circ} \mathrm{C}$ to | $1100{ }^{\circ} \mathrm{C}$ |  | 0.4 K |  |
|  | $>1100{ }^{\circ} \mathrm{C}$ to | $1800{ }^{\circ} \mathrm{C}$ |  | 0.3 K |  |
| Temperature indicators for thermocouples * <br> Type J, T, E, K, N | $-200{ }^{\circ} \mathrm{C}$ to | $1300{ }^{\circ} \mathrm{C}$ | DKD-R 5-5:2018 <br> with internal reference junction | 0.35 K | Characteristic curve according to DIN EN 60584:2014 |
| Type R, S | $0^{\circ} \mathrm{C}$ to | $100^{\circ} \mathrm{C}$ |  | 0.7 K |  |
|  | $>100^{\circ} \mathrm{C}$ to | $1800{ }^{\circ} \mathrm{C}$ |  | 0.5 K |  |
| Type B | $600{ }^{\circ} \mathrm{C}$ to | $700^{\circ} \mathrm{C}$ |  | 0.6 K |  |
|  | $>700^{\circ} \mathrm{C}$ to | $1200{ }^{\circ} \mathrm{C}$ |  | 0.5 K |  |
|  | $>1200{ }^{\circ} \mathrm{C}$ to | $1800{ }^{\circ} \mathrm{C}$ |  | 0.4 K |  |
| Pressure * <br> Positive gauge pressure | 0 bar to | 14 bar | DKD-R 6-1:2014 | 0.8 mbar $+1.0 \cdot 10^{-4} \cdot p_{\text {e }}$ | $p_{\mathrm{e}}=$ measured value <br> Pressure medium: gas |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## On-Site Calibration - Wetzlar

Calibration and Measurement Capabilities (CMC)


This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Ruhla

## On-Site Calibration - Ruhla

| Calibration and Measurement Capabilities ( $C M C$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measurement quantity <br> / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| Hardness (MTM) * |  |  |  |  |
| Calibration of Hardness testing machines according to Brinell, Vickers and Rockwell methods | 50 HV To 1500 HV <br> (Hardness scales HV5 to HV100) <br> (Hardness scales HV0,01 to HV3) | DIN EN ISO 6506-2:2019 <br> DIN EN ISO 6507-2:2018 <br> DIN EN ISO 6508-2:2015 | 1 \% HV, but not less than $1.5 \cdot U_{\text {CRM }}$ 2 \% HV, but not less than $1.5 \cdot U_{\mathrm{CRM}}$ | Determination of uncertainty with direct and indirect calibration of hardness testing maschine <br> $U_{\text {CRM }}=$ Calibration uncertainty of hardness reference plate |
|  | 20 HRA to 95 HRA |  | 0.6 HRA |  |
|  | 10 HRBW to 100 HRBW |  | 1.0 HRBW |  |
|  | 10 HRC to 70 HRC |  | 0.6 HRC |  |
|  | 20 HRN to 94 HRN |  | 1.0 HRN |  |
|  | 10 HRTW to 93 HRTW |  | 1.6 HRTW |  |
|  | 60 HRFW to 100 HRFW |  | 1.0 HRFW |  |
| Calibration of depth measuring device of Rockwell hardness testing machines * | 0 mm to 0.25 mm | DIN EN ISO 6508-2:2015 | $0.6 \mu \mathrm{~m}$ | direct calibration with depth measuring device |
| Calibration of indentation measuring device of hardness testing machines * | 0.01 mm to 6 mm | DIN EN ISO 6506-2:2019 DIN EN ISO 6507-2:2013 | $0.15 \mu \mathrm{~m}$ | Measuring principle: Stage micrometer in reflected light |
| Calibration of force | 2.5 N to 50 kN | DIN EN ISO 6506-2:2019 | 0.24 \% | with force sensors |
| measuring device of hardness testing machines * | 0.1 N to 100 N | DIN EN ISO 6507-2:2018 DIN EN ISO 6508-2:2015 | 0.10 \% | (class 1) in compression direction |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Nürnberg

Permanent Laboratory - Nürnberg


## Abbreviations used:

| ASTM | American Society for Testing and Materials |
| :--- | :--- |
| CMC | Calibration and measurement capabilities |
| DIN | Deutsches Institut für Normung e.V. |
| DKD-R | Guideline of Deutscher Kalibrierdienst (DKD), <br> published by Physikalisch-Technische Bundesanstalt |
| EURAMET | European Association of National Metrology Institutes |
| OIML R | International Recommendation of International Organization of Legal Metrology |
| Trescal KA | Calibration Guide of Trescal GmbH |
| VDE | Verband der Elektrotechnik, Elektronik und Informationstechnik e.V. |
| VDI | Verein Deutscher Ingenieure e.V. |

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

## Trescal

## Annex <br> Flexible Accreditation

## Calibration and measurement capabilities (CMC)

## > Partial Accreditation Certificate D-K-15015-01-01

The laboratory uses calibration standards or equivalent calibration procedures with different issue dates from the accreditation certificate for the following:

## Permanent Laboratory - Neustadt

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Length <br> Internal micrometers with three-point contact * | 3 mm to 300 mm | VDI/VDE/DGQ/DKD 2618, Part 10.8:2024 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |

## Permanent Laboratory - Esslingen



## Permanent Laboratory - Parchim

| Measurement quantity / <br> Calibration item | Range | Measurement conditions / <br> Procedure | Expanded measurement <br> of uncertainty | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Length | 3 mm to 300 mm | VDI/VDE/DGQ/DKD 2618, <br> Part 10.8:2024 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Internal micrometers three-point <br> with |  |  |  | 300 mm $=$ Final value of <br> the measuring range |

[^5]
## Trescal

## Annex <br> Flexible Accreditation

## Permanent Laboratory - Berlin / Mahlow

| Measurement quantity / <br> Calibration item | Range | Measurement conditions / <br> Procedure | Expanded measurement <br> of uncertainty | Remarks |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Length | 3 mm | to 200 mm | VDI/VDE/DGQ/DKD 2618, <br> Part 10.8:2024 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |
| Internal micrometers <br> with three-point <br> contact * |  |  |  | 200 mm $=$ Final value of <br> the measuring range |  |

## Permanent Laboratory - Halver



## Permanent Laboratory - Ruhla

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Length <br> Internal micrometers with three-point contact * | 3 mm to 200 mm | VDI/VDE/DGQ/DKD 2618, Part 10.8:2024 | $4 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |

## Permanent Laboratory - Nürnberg

| Measurement quantity / Calibration item | Range | Measurement conditions / Procedure | Expanded measurement of uncertainty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Length <br> Internal micrometers with three-point contact * | 3 mm to 200 mm | VDI/VDE/DGQ/DKD 2618, Part 10.8:2024 | $3 \mu \mathrm{~m}+10 \cdot 10^{-6} \cdot d$ | $d=$ measured diameter |

[^6] obtain prior approval from DAkkS, to use calibration standards or equivalent calibration procedures listed here with different issue dates. The calibration laboratory maintains a current list of all calibration standards / equivalent calibration procedures within the flexible scope of accreditation.


[^0]:    This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

[^1]:    This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

[^2]:    Valid from: 10.01.2024

[^3]:    Valid from:

[^4]:    Valid from: 10.01.2024

[^5]:    Within the measurands/calibration items marked with *, the calibration laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use calibration standards or equivalent calibration procedures listed here with different issue dates. The calibration laboratory maintains a current list of all calibration standards / equivalent calibration procedures within the flexible scope of accreditation.

[^6]:    Within the measurands/calibration items marked with *, the calibration laboratory is permitted, without being required to inform and

